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Abstract In this paper, the linear and nonlinear Fokker-Planck equations (FPE) are solved by a
semi-analytical iterative technique. This technique was proposed by Temimi and Ansari (TAM)
in 2011. It is used to obtain the exact solutions for the 1D, 2D and 3D FPE. We solve several linear
and nonlinear examples to show that the method is efficient and applicable. The results demonstrate
that the presented method is very effective and reliable and does not require any restrictive assump-
tions for nonlinear terms. A symbolic manipulator Mathematica®10 was used to evaluate terms in

© 2017 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
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1. Introduction

There are many varieties of physical problems that are mod-
eled by either ordinary or partial differential linear or nonlin-
ear equations. Therefore, there is always a demand to develop
reliable and efficient methods to obtain analytic solutions.
During previous decades, scientists, mathematicians and physi-
cists devoted considerable efforts to find either exact or numer-
ical solutions for many nonlinear differential equations
(ordinary or partial). Many methods have been proposed.
For example: Adomian decomposition method (ADM)
(Adomian, 1983, 1986, 1994; Tatari et al., 2007; Elhanbaly
and Abdou, 2006; Zhang and Liang, 2015; Akram and
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Aslam, 2016; Beran and Celikovsky, 2016), the variational iter-
ation method (VIM) (He, 1999, 2000, 2007; Biazar et al., 2010;
Chang, 2016; Mohyud-Din et al., 2017; Siddiqi and Iftikhar,
2015), Darboux transformation method (Gu, 1999), exp-
function method (He and Wu, 2006; Xu, 2007), modified sim-
ple equation (MSE) method (Khan and Akbar, 2013, 2014a,b;
Khan et al, 2013a,b; Akter and Akbar, 2015), (G'/G)-
expansion method (Borhanifar and Abazari, 2011; Akbar
et al.,, 2013; Naher et al., 2013; Alam and Akbar, 2013,
2015), F-expansion method (Wang et al., 2003, Wang and
Zhou, 2003; Zhou et al., 2003, 2004; Islam et al., 2014), tanh
function method (Malfliet, 1992; Parkes and Duffy, 1997,
Fan, 2000; Yan and Zhang, 2001; Zayed et al., 2004;
Abdusalam, 2005; Xie et al., 2005), Backlund transformation
method (Rogers and Shadwich, 1982) and many others.

One of the most prominent differential equations is the
Fokker-Planck equation (FPE), which was used to describe
the Brownian motion of particles (Risken, 1989) by Fokker
and Planck. The FPE is featured in natural sciences
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(in different fields), including chemical physics, solid state phy-
sics, theoretical biology, quantum optics and circuit theory.
Many current studies feature the FPE right now (Askari and
Adibi, 2015; Saravanan and Magesh, 2016; Carlini and Silva,
2016; Busani, 2017, Wang and Duan, 2016; Gaviraghi et al.,
2017).

Since the implementation of the FPE is not restricted to sys-
tems near thermal equilibrium, the FPE may be also imple-
mented to systems away from the thermal equilibrium
(Risken, 1989). For example, the statistics of laser light can
be described by using the FPE. In a superionic conductor
under the impact of a strong external field, there are many ions
and all of these ions are considered a system out of the thermal
equilibrium. A simple model of that system can be described
by the FPE. When using the time-dependent formulation,
the FPE can also be used for describing the dynamics of sys-
tems and not only for the evaluation of stationary properties
(Risken, 1989).

The following equation describes the distribution function
W(x,t) for the motion when a small particle of mass m is
immersed in a fluid (Risken, 1989):
oW oW KTOW .
o T e M
where ¢ represents the time, v represents the velocity of the
Brownian motion of the immersed particle, K and 7T are the
constant of Boltzmann and the fluid temperature respectively
and y represents the constant of fraction.

The TAM semi-analytical iterative method has been pro-
posed by H. Temimi and A. R. Ansari to solve and deal with
numerous kinds of nonlinear problems (Temimi and Ansari,
2011). The TAM is used to evaluate and find the exact and
approximate solutions for different problems, such as, the non-
linear ordinary differential equations (Temimi and Ansari,
2015), nonlinear second order multi-point boundary value
problems (Temimi and Ansari, 2011), KdV equations
(Ehsani et al., 2013), duffing equations (AL-Jawary and Al-
Razaq, 2016) and chemistry problems (AL-Jawary and
Raham, 2016). The results obtained using TAM feature a high
convergence and indicate that this method is appropriate,
accurate and time efficient.

In this paper, we develop TAM for solving the 1D, 2D and
3D linear and nonlinear Fokker-Planck equation. The original
contribution of the paper is the development of the TAM for
the solution of the linear and nonlinear Fokker-Planck equa-
tions. The paper has been organized as follows: in Section 2
the Fokker-Planck equation is introduced. In Section 3, we
review the basic idea of TAM. In Section 4 examples of solving
the FPE by the TAM are shown and finally, the conclusions
are given in Section 5.

2. The Fokker-Planck equation

The generalized formula of the FPE for two independent vari-
ables x and 7 is given in the following form (Risken, 1989):

D _ (_ A+ %B(x)) u(x, 1), @

with the following initial condition

u(x,0) =flx),x € R. (3)

Here B(x) > 0 represents the diffusion coefficient and A4(x)
represents the drift coefficient. These coefficients are may be
functions of x and ¢. In this case, Eq. (3) is rewritten in the fol-
lowing way:

% = (— %A(x, 0+ % B(x, t)) u(x, 1). (4)

The Eq. (2) describes the motion of the concentration field
u(x,t). This equation considered mathematically linear second
order partial differential equation, which is of parabolic type.
Also, this equation called the forward Kolmogorov equation.
The following formula describes the backward Kolmogorov
equation (Risken, 1989):

Ou 0 &

E— —<A(.X', Z)aﬁ—B(x,t)w)u(x, l). (5)
The next Eq. (6) represents a generalized formula for Eq.

(2) for J variables xi,xs,..., X

ou 0 Ly

o, | 7Ai 731 sty 6

o ( ;m[_ (x) + ;%axj J(X) Ju(x,0) (6)

with the following initial condition
u(x,0) = f(x),x = (x1,%2,...,x,) € R (7)

In general, we observe that in Eq. (6) each of the drift vec-
tor A; and the diffusion tensor B;; depend on all J variables
X1, X2,...,X).

The most general form of the FPE is the nonlinear FPE,
which also has very important applications in different areas
such as surface physics, plasma physics, laser physics, bio phy-
sics, polymer physics, population dynamic, nonlinear hydrody-
namics, engineering, pattern formation, psychology,
neurosciences and marketing (Frank, 2004). The nonlinear
FPE for one variable has the following form

Ou 0 &

—=|—54 — B(> b

o ( p (x, t,u) + pr (x, ¢, u))u(x, 1), (8)
and the nonlinear FPE for J variables x;, x5,...,Xx; is

au J a J 82

Z_ - A, B

= (S tenn + Lt s
where x = (x1,xs,...,x,) € R’.

3. The basic idea of the semi-analytical method (TAM)

To review the TAM algorithm, consider the following general
differential equation (Temimi and Ansari, 2011, 2015):

L(u(x)) + N(u(x)) +g(x) = 0, (10)

with the following initial conditions: I(u,%) =0.

Here u(x) is the unknown function, x represents the inde-
pendent variable, while L and N represent the linear and the
nonlinear operators, respectively. g(x) represents the inhomo-
geneous term, which is a known function and 7 is an initial
operator for the problem. / depends on p and perhaps on
the derivatives of order k, where k is a natural number. L is
the linear part of the differential Eq. (10) and represents the
main requirement. Also, one can take some linear parts and
add them to the nonlinear parts N, as needed.
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The TAN algorithm can be described as follows:
First consider the initial approximate function u,(x), which
is the solution for the following initial problem

L(up(x)) + g(x) = 0, with I(uo,%) =0, (11)

Second, to find the next iterative function u; (x), the follow-
ing problem must be solved

L(uy(x)) + N(up(x)) + g(x) = 0, with 7 (ul,%) =0. (12)

The next and all other iterations can be evaluated in the
same way. To find the n 4 1 iterative function, one must solve
the following problem

L(uyy1(x)) + N(u,(x)) + g(x) = 0, with I(u,,ﬂ,%> =0,
(13)

It can be observed that this iterative procedure is reliable
and effective. Also, each solution is a development of the pre-
vious iterative solution. When we increase the number of iter-
ations, we will obtain a new solution that converges to the
solution of the current problem. The conditions for conver-
gence of TAM are presented in (Temimi and Ansari, 2015).

4. Solution of the Fokker-Planck equation by TAM

In this section, the TAM method will be derived to solve sev-
eral examples of the 1D, 2D, 3D linear and nonlinear Fokker-
Planck equations.

Example 1. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us consider
the following 1D linear FPE in Eq. (2) with this initial
condition

u(x,0) =x,x € R, (14)
with 4(x) = —1 and B(x) = 1.

Solution:

By implementing the same steps as described in the previ-
ous section, we first begin by solving the following initial prob-
lem to find the initial approximation u(x, )

6140
-0 15
ot ’ (15)

with an initial condition, which is equal to (14)
up(x,0) = x.

By solving the problem defined in Egs. (14) and (15), we
have

Mo(x, t) =X

and then the second iteration u;(x, r) can be obtained by eval-
uating the following problem:

A,y d s
Ot — (= A + 5 B ). ), (16)
with an initial condition that equals to (14)

u(x,0) = x.

By solving the problem (16) with the initial condition, we
obtain:

u(x, ) =1+ x.

Also, by the same procedure, other solutions can be gener-
ated from evaluating the problems in the general form
82

— (_ BaxA(x) +w3(x)) uy(x,1),n = 2, (17)

8un+l
ot

with an initial condition that equals to (14)
Up11(x,0) = x.
Therefore, in iterative procedure, we obtain the exact
solution
u(x, 1) =t+x.

This solution is the same as the result obtained by the DJIM
(AL-Jawary, 2016), ADM (Tatari et al., 2007), HPM
(Yildirim, 2010), VIM (Biazar et al., 2010), and DTM
(Hesam et al., 2012).

Example 2. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us take the
following 1D linear FPE in Eq. (4) with the following initial
condition

u(x,0) =sinhx, xeR, (18)

with A(x,t) = €' coth x cosh x + ¢’ sinh x — coth x and

B(x,t) = e’ cosh x.

Solution:

Applying the same steps as in the previous example, we first
begin by solving the following initial problem in order to find
the initial approximation uy(x, )

% o, (19)
with an initial condition, which is the same as in (18)

up(x,0) = sinh x,

we get

uo(x,t) = ¢’ cosh x.

The next iteration u;(x, ) can be obtained by solving the
following problem:

o [ D &
E - (_aA(xv [) +@B()ﬂ [))Mo(x, l)v (20)

with an initial condition which is equal to (18)

uy(x,0) = sinh x.

Solving the problem (20) with the corresponding initial con-
dition, we obtain:u;(x, ) = (1 + #) sinh x.

The iteration u,(x, ) can be evaluated by solving the fol-
lowing problem:

Bu, _
o

fiA(x 1) +8—28(x 1) Ju(x,1) (21)
6x ’ axz ’ 1\Ay L),
with an initial condition that equals to (18)

ur(x,0) = sinh x.
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Solving the problem (21) with the given initial condition, we
have:

2
ur(x, 1) = (1 +14+ 2|) sinh x.

The other iterative solutions can be generated in the same
way from evaluating the next problems, which are in the gen-
eral form

2

aurHrl

0 0
=(-= + = ; > 3,
” ( A(x, 1) 5 B(x, Z)) u,(x,t),n =3 (22)

with the initial condition that equals to (18)
Upy1(x,0) = sinh x.

Hence, in iterative steps we have

2 3 4

uy(x,1) = <1+z+2'+3'+4'+ >sinhx.

As n — +oo the explicit form of the exact solution is
u(x,t) = e'sinh x.

and this formula is equal to the solutions, which are calculated
by the DIM (AL-Jawary, 2016), ADM (Tatari et al., 2007),
HPM (Yildirim, 2010), VIM (Biazar et al., 2010), and DTM
(Hesam et al., 2012).

Example 3. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us take the
following 1D linear FPE in Eq. (5) with this initial condition
u(x,0) =x+1,
where A(x, ) =

xeR, (23)
—1—x and B(x,1) = x’¢".

Solution:

Implementing the same steps as in the previous examples,
we begin by solving the following initial problem in order to
find the initial approximation uy(x, )

8140 -
ot
with the following initial condition, which is given in (23)

up(x,0) = x + 1.

(24)

Now, solving the initial problem (21) with the given initial
condition, we get
uO(-x7 t) =x+ 17

The next iteration u(x,) is obtained by evaluating this
problem:

o (0 &
E_ (75‘4()@[)+@B(X7t)>u0(x7t)7 (25)

with an initial condition which is equal to (23)
u(x,0) =x+ 1.

Solving the problem (25), we obtain:
w(x, 1) =1+1+x+1tx.

The iteration u,(x,7) can be obtained by solving this
problem:

o, (0 o
Ef_(EA(XJ‘)+@B(X7t))ul(x7t)v (26)

with an initial condition that equals to (23)
ur(x,0) = x+ 1.

Evaluating the problem (26), we have:

2
2'+x+t~c++1x

Thus, the other solutions will be generated by the same way
from solving the next problems which are of the general form

wp(x, 1) =1+1+

8un+l _ 8 " 82
o —(aA(/\,t) —i-@B(x7 t))u,,(x, t),n =3, (27)

with the initial condition that equals to (23)
Upi1(x,0) = x + 1.

Hence, in iterative steps, we have
t2 3 4
()= (1+1
Uy (x, ) ( + +2+3+4,+ )

R R
(1+z+2 +3i +4,+ )
As n — o0 the explicit form of the exact solution is
u(x,t) =e'(x+1).

The form above is equal to the results that have been
obtained by the DIM (AL-Jawary, 2016), ADM (Tatari
et al., 2007), HPM (Yildirim, 2010), VIM (Biazar et al.,
2010), and DTM (Hesam et al., 2012).

Example 4. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us consider
the following 2D linear FPE in Eq. (6) with the following
initial condition

u(-¥17~’5270) =X, X = (thz) € R27 (33)

with each of the following

Ay (x1,x2) = x1,
Az(\hxz) = 5x3,
Bu(xl,xz) = x%a
Bis(x1,x2) =1,
le(xlyxz) =1,
Bys(x1,x2) = X3,

Solution:

Implementing the TAM algorithm, we first solve the follow-
ing initial problem in order to find the initial approximation
U (X] , X2, [)

8140
o

with the following initial condition which is the same as (33)

=0, (34)

uo(xl,x27 0) = Xi.

By solving the initial problem (34) with the corresponding
initial condition, we getug(x;, x2,1) = X,

The second iteration u;(xy, X2, 7) is obtained by solving the
following problem:

81417 0
E— (—8—MA(XI7X2)+

2

8X1 8)(72

B(xhxz))uo(xl,xz,l), (35)
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with an initial condition, which is equal to (33)
uy (x1,x2,0) = x1.

Solving the problem (35), we obtain:
uy (x1,x2,¢) = (1 4+ 1)x;.

The iteration u,(x;,x,,) can be obtained by solving this
problem:

2
auz

0 0
E = —(%A(Xl,XZ) + aXIaxz B(Xl,XZ)) ul(Xl,Xz, l), (36)

with an initial condition that equals to (33)
(X1, %2,0) = x;.

Evaluating the problem (36), we have:

2
ur (X1, X2, 1) = (1 +I+E)X1~

Finally, the other solutions are generated by the same
way from solving the next problems, which are in the gen-
eral form

8un+1 6 82
- (24 _% B
o1 <8x1 (1,00) + 5o 2

xhxz))un(xl,xz,t),n >3,
(37)

with the initial condition that equals to (33)

un+1(X17X2,0) = Xi.

Thus, in iterative way we will have

2 £
u,,(xl,xz,t):<1+t+5+§+ﬂ+...)x1.

As n — 400 the explicit form for the exact solution will be
u(x1 , X2, Z) = e’xl .

This function is the same as the results that have been eval-
uated by the DJM (AL-Jawary, 2016), ADM (Tatari et al.,
2007), HPM (Yildirim, 2010), VIM (Biazar et al., 2010), and
DTM (Hesam et al., 2012).

Example 5. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us consider
the following 3D linear FPE in Eq. (6) with the following
initial condition

M(X,O) = X3, X = (xl7x27x3) € R37 (38)

with each of the following
Ay (x1, %2, x3) = 2x1,

Ay (X1, X2, x3) = 23,
As(x1, X2, x3) = 23,
31,1(X17x27x3) = X1,
Bl,z(xuxz’)%) =1,
BI,S(x17x2»x3) =1,
BZ,I(x17x2»X3) =1,
Bz.z(x17X27X3) = X2,

32,3(X17X2,X3) =1,

Solution:

Applying the TAM algorithm given in the previous exam-
ples, the following initial problem will be solved in order to
find the initial approximation uy(xy, X3, X3, f)

Oy _
o

with the following initial condition, which is the same as (38)

0, (39)

up(x1, X2, x3,0) = x3.
By solving the initial problem (39), we get
Up (X1, X2, X3, 1) = X3,

The second iteration u;(xy, X2, X3, #) resulted by solving this
problem:

ou [ 0 7
B0 (‘a—ﬂ("“xm”—axlaxz

B(xl,xz,x3))uo(x17x2,x3,t),
(40)
with an initial condition which is equal to (38)
uy (x1,x2,x3,0) = x3.
Solving the problem (40), we obtain:
uy (x1,x2,x3, 1) = (1 + £)x3.

The iteration uy(x1, x», X3, ) can be obtained by solving this
problem:

ouy [0 P
T (a—xlA(Xth,Xz) +mB(X17X27X3)) uy (x1,%2,X3,1),

(41)
with an initial condition that equals to (38)
(X1, X2, %3,0) = x3.

Evaluating the problem (41), we have:

2
ur(X1,X2,X3,1) = (1 +l+5>x3-

Thus, the other solutions will be generated by the same way
from solving the next problems, which are in the general form

Oty 41 0 i
=4 R B 2
ot (5}61 (xl,‘C27X3)+axlax2 (x1,x2,x3)
X un(-xly-x27x37t)7n > 37 (42)

with the initial condition that equals to (38)
Uy (X1, X2, X3,0) = x3.

Thus, in an iterative way we will have

3 4

e 2Pt
U (X1, X2, X3, 1) = +t+j+§+ﬂ+”' X3.

As n — 400 the explicit form for the exact solution will be
u(xy,x2,x3,1) = e'xz.

This formula is equal to the result that has been evaluated
by the DIM (AL-Jawary, 2016), ADM (Tatari et al., 2007),
HPM (Yildirim, 2010), VIM (Biazar et al., 2010), and DTM
(Hesam et al., 2012).

Example 6. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us take the
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following 1D nonlinear FPE in Eq. (8) with the following
initial condition

u(x,0)=x%, x€R, (43)

with each of A(x, ) = 4“0 ¥ and B(x,1) = u(x,1).

X

Solution:

Applying the same steps as in the previous examples, we
first begin by solving the following initial problem in order
to find the initial approximation uy(x, ¢)

8140
ot
with an initial condition, which is the same as (43)

up(x,0) = x7.

=0, (44)

Solving the initial problem (44), we get
up(x, 1) = x>

The next iteration u(x,) is obtained by evaluating this
problem:

% = (f%A(x, t,up) +%:2B(x, t, uo))uo(x, 1), (45)
with an initial condition, which is equal to (43)
u(x,0) = x7.

Solving the problem (45), we obtain:
ur(x, 1) = (1 +0)x>

The iteration u,(x,7) can be obtained by solving this
problem:

Ouy 0 o
FT (—aA(X,I,MQ-F@B(X, t,ul))ul(x, 0, (46)
with an initial condition that equals to (43)

ur(x,0) = x°.

Evaluating the problem (46), we have:

12
wy(x,1) = (1 +r+ 5) X2

and so on. The other solutions can be generated by the same
way from evaluating the next problems which are in the gen-
eral form

Onyr 0 &
e (—$A(x, 1, uy) +WB(X’ Z,un))un(x, t),n =3,

(47)

with the initial condition that equals to (43)
Up41 (x7 0) = x2.

Hence, in iterative steps we have
R S )
uy(x,1) = (1 +[+E+§+E+”'>x .
As n — +oo the explicit form of the exact solution is
u(x, t) = x%'.

This formula is the same result as was calculated by the
DIJM (AL-Jawary, 2016), ADM (Tatari et al., 2007), HPM

(Yildirim, 2010), VIM (Biazar et al., 2010), and DTM
(Hesam et al., 2012).

Example 7. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us consider
the following 2D nonlinear FPE in Eq. (9) with the following
initial condition

u(xy,x2,0) = x2, x = (x1,x,) € R?, (48)
with each of the following

Ai(xi,x2) = Fu(xr, x0,1),

By (x1,x2) = u(xy,x2, ),

Implementing the steps of the TAM, solving the following
initial problem to find the initial approximation uy(xy, X2, f)

Ouy
ot

with the following initial condition, which is the same to (48)

=0, (49)

uo(x1,x,,0) = xf.

Solving the initial problem (49), we get
MO(xlava l) = X%,

The second iteration u; (xy, X2, #) is obtained by solving this
problem:

2
Our _ (fiA(xHXz,uo) o

- = B X1, X2, 1
ot o, +8x18x2 (thzvuo))%(lwz, )s

50
with an initial condition which is equal to (48) 0
up (x1,%2,0) = x2.
Solving the problem (50), we obtain:
up (x1, %2, 1) = (1 — £)x2.
The iteration u,(x;,x,) can be obtained by solving this
problem:

o
ot

0 lia
=— (8_96114()617)(27 up) +m3()€17xz7u1))u1(x17x27 1),
(51)
with an initial condition that equals to (48)
le(X],Xz, 0) = X%.

Evaluating the problem (51), we have:

2
uy(x1, %2, 1) = (1 - t+5>x%.

The other solutions will be generated by the same way from
solving the next problems, which are in the general form

8un+1 o 8 62
ot = —(a—x]A(.Xl,XQ7un)+M8(x17x27u”))

Xty (X1, X2, 1), = 3, (52)
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with the initial condition that equals to (48)
Upt1 (-xl s X2, 0) = x%‘

Thus, in iterative way we will have

2
— )Xy

As n — +oo the explicit form for the exact solution will be

2 3 I4

t t
un(xl7x27t) = (1 —I+5—§+m

u(xy, xy,1) = xle™".

The above formula is similar to the results that have been
evaluated by the DIM (AL-Jawary, 2016), ADM (Tatari
et al., 2007), HPM (Yildirim, 2010), VIM (Biazar et al.,
2010), and DTM (Hesam et al., 2012).

Example 8. (AL-Jawary, 2016; Tatari et al., 2007; Yildirim,
2010; Biazar et al., 2010; Hesam et al., 2012) Let us consider
the following 3D nonlinear FPE in Eq. (9) with the following
initial condition

u(x,0) = (x3 = 1)%,
with each of the following

X = (x17x27x3) € R37 (53)

A (Xl,’fz,‘ﬁ —X1,

)=
Ay(x1,x2,x3) = (’Cl, X2, X3, 1),
A?(xl7x27x3) (3— 1

(X],X2,X3,[)7

Solution:
Applying the TAM algorithm, we start by solving the initial
problem to find the initial approximation uy(xy, X2, X3, )

o _
ot '
with the following initial condition, which is the same as (53)
(x5 — 1)

When the initial problem (54) will be solved, we will get
(x5 = 1)%,

The second iteration u;(xy, X2, x3, ) is obtained by solving
this problem:

(54)

Mo(X],.Xz,X},O) =

(X1, X2, X3,1) =

% = (—%A(x],xz,m,%) +%;&B(x],xz,x3,uo))
X uy(x1, X2, X3, 1), (55)
with an initial condition, which is equal to (53)
(x3 — 1)2.
Solving the problem (55), we obtain:
=(14+00xs -1

Hl(X17x27x370) =

u (X1, X2, X3, 1)

The iteration uy(x1, x5, X3, ) can be obtained by solving this
problem:

0 0 o
% = _(a_xlA(xl7x27x37 up) +MB(X17X27X3,141))

X uy (X1, X2, X3, 1), (56)
with an initial condition that equals to (53)
(xs — 1)%.
Evaluating the problem (56), we have:

uy (X1, X2, x3,0) =

2
142(961,)6273637 l) = (1 +1+ 2') (X3 — ])2

Thus, the other solutions will be generated in the same way
from solving the next problems, which are given in the general
form as

6un+l
ot

9 2
= 7(8—1A(xl,xz,xs7un) MB(XI:XLX%“"))

Xun(xlv-x27-x3at)7n > 37 (57)

with the initial condition that equals to (53)

Mn+1(x17X2,x3,0) = (x3 - 1)2~

Thus, in an iterative way we will have

2 3 4

t
un(xhxz,xg,t):(l—i—t—i- +3'+ +.

)(x3 —1)%

As n — o0 the explicit form for the exact solution will be
u(xy,x2, X3, 1) = €' (x3 — 1)

This formula is the same as the results that have been eval-
uated by the DJM (AL-Jawary, 2016), ADM (Tatari et al.,
2007), HPM (Yildirim, 2010), VIM (Biazar et al., 2010), and
DTM (Hesam et al., 2012).

5. Conclusion

In this article, we develop an efficient semi-analytic method
TAM for the solution of the Fokker-Planck equation. We
prove the validity of our approach and show the efficiency of
the proposed method by solving several test cases. The test
cases include 1D, 2D, 3D linear and nonlinear implementa-
tions of the Fokker-Planck equations. All examples are solved
successfully efficiently. The TAM is easy for applying and han-
dling such kind of PDEs since implementation of this method
does not require any restrictive assumptions for the nonlinear
terms as required by some existing techniques such as the
ADM, VIM and HPM. Also, the programming of this method
is time-saver and economical in terms of computer processing
and does not involve tedious evaluations. The test examples of
FPE in this paper showed that the TAM is considered a reli-
able iterative method in dealing with such types of problems
and providing the exact solutions.
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