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 A B S T R A C T

Soft particles in viscous flows are prevalent both in nature and in various industrial applications. 
Notable examples include biological cells such as blood cells and bacteria as well as hydrogels 
and vesicles. To model these intriguing particles, we present an extension of our recent, 
efficient, and versatile pseudo-rigid body approach, originally developed for initially spherical 
soft particles suspended in arbitrary macroscale viscous flows. The novel extension allows 
modeling the barycenter and shape dynamics of soft initially non-spherical, i.e. ellipsoidal 
particles by introducing a novel shape and orientation tensor. We consider soft, micrometer-
sized, ellipsoidal particles deforming affinely. To this end, we combine affine deformations (as 
inherent to a pseudo-rigid body) and the Jeffery-Roscoe model to analytically determine the 
traction exerted on a soft ellipsoidal particle suspended locally in a creeping flow at the particle 
scale. Without loss of generality, we assume nonlinear hyperelastic material behavior for the 
particles considered. The novel extension of our recent numerical approach for soft particles 
demonstrates that the deformation and motion of the particles can be accurately reproduced also 
for ellipsoidal particles and captures results from the literature, however, at drastically reduced 
computational costs. Furthermore, we identify both the tumbling and trembling dynamic regime 
for soft ellipsoidal particles suspended in simple shear flow again capturing results from the 
literature. Our extended approach is first validated using experimental and numerical studies 
from the literature for quasi-rigid as well as soft particles, followed by a comparison of the 
effects of particle deformability for some well-known fluid flow cases, such as laminar pipe flow, 
lid-driven cavity flow, and a simplified bifurcation. We find that taking particle deformability 
into account leads to notable deviations in the particle trajectory compared to rigid particles, 
with increased deviations for higher initial particle aspect ratio. Furthermore, we demonstrate 
that our approach can track a statistically relevant number of soft particles in complex flow 
situations.

1. Introduction

Particles in flows are widely present in nature, from platelets in the blood to asbestos fibers in the air to microplastics in the 
oceans. In addition, various industries rely on handling particulate systems suspended in fluids, especially in petrochemical, wastew-
ater, cement, or pharmaceutical industries, [1,2]. The research on suspension of rigid particles is vast, see several analytical [3–7], 
experimental [8–12], and computational [13–20] studies for spherical and non-spherical rigid particles. However, rigidity of the 
suspended particles is not always given and thus, a particle might change shape due to the action of the surrounding fluid. Even 
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though there exist pertinent examples of soft particles, i.e. both man-made (liposomes, vesicles, hydrogels, liquid capsules, [21], filled 
polymers [22]) and naturally occurring (biological cells, [23], bacteria, algae), only limited research is available, [24], especially 
when large numbers of particles are involved, and as a consequence, the knowledge about these systems remains limited.

1.1. State-of-the-art on modeling soft micro-particles in flows

Pioneering research on soft particles was conducted by Fröhlich and Sack, [25], who studied Hookean elastic particles of initially 
spherical shape suspended in extensional Newtonian flow. Cerf, [26], studied an infinite dilute suspension of viscoelastic spheres 
in a viscous fluid experiencing small amplitude oscillatory motion. Later, Goddard & Miller, [27], investigated the transient shape 
dynamics of visco-elastic spheres that were slightly deformable and surrounded by a Newtonian fluid under Stokes flow conditions. 
As stated by Sanavagarapu, [21] the above prominent studies [25–27] on deformable elastic (and viscoelastic) particles suspended 
in flows are targeting the small deformation regime, i.e. assuming a simplifying linear constitutive relation for the elastic stress.

Roscoe, [28], was the first to study suspensions of visco-elastic micro-particles of initially spherical shape suspended in viscous 
flows targeting the regime of finite and large deformations. Note that Roscoe’s work serves as an extension to the seminal work 
of Jeffery, [7], who studied rigid ellipsoids, and the work of Cerf, [26]. Roscoe observed that the considered particles (of initially 
spherical shape) suspended in simple shear flow adopt, after a transient stage, a stationary ellipsoidal shape with a fixed orientation. 
However, the material points within the ellipsoids undergo continuous deformation, i.e. the so-called tank-treading motion,[28]. 
Roscoe’s underlying assumption of affine deformation was validated first in 2D (initially circular particles) by Gao & Hue, [29], and 
later in 3D (initially spherical particles) by Gao et al. [30]. The authors observed in their numerical simulations the predicted steady-
state ellipsoidal shape and orientation as well as the tank-treading phenomenon in their research. Note that the theoretical framework 
of Gao et al. for describing the particle deformation bases on a polarization technique and requires a surface discretization. Later, 
Gao et al. [31], extended the theoretical framework to include prolate ellipsoidal soft particles suspended in planar shear flow. 
The authors observed that the ellipsoidal particles experience either a tumbling behavior as in the quasi-rigid particle limit or a 
so-called trembling regime, which was also experimentally observed in vesicles, [31]. Furthermore, Gao et al. [32], investigated 
2D elliptic particles in extensional flow and observed that the steady-state particle shape (long axis of the particle aligned with the 
extensional direction of the flow) varies from the steady-state shape of a similar particle suspended in a shear flow. As pointed out 
by Sanagavarapu et al. [21], the theoretical framework of Gao et al. [29–32], to model soft particles in flows, bases on the upper 
convective time derivative of the Neo-Hooke constitutive relation to obtain the stress rate versus strain rate relationship. However, 
Sanagavarapu et al. [21], states that this is a restricting factor of the framework as it cannot be employed for general constitutive 
relations such as, e.g., the Mooney–Rivlin constitutive model, as here the stress rate cannot be related to strain rate alone. As an 
improvement, Sanagavarapu et al. [21], suggest directly relating the total stress to the total strain, i.e. the conventional approach 
in hyperelasticity. Note that similar to the work of Gao et al. [29–32], the work of Sanagavarapu et al. [21], requires a particle 
discretization to capture the particle deformability and thus both frameworks are clearly limited by the number of soft particles that 
can be considered simultaneously.

Taken together, we note that the frameworks proposed in the literature targeting either analytical and/or computational solutions 
focused mainly on initially spherical or, with some exceptions, on initially ellipsoidal soft particles under restrictive assumptions. 
These assumptions arise from the derivation for either a specific constitutive behavior of the soft particles and/or flow conditions. 
Note that in addition to these restrictions, the available computational frameworks require particle discretization and thus typically 
require significant computational cost, especially when large numbers of particles have to be considered.

In our recent work, see Wedel et al. [33], we presented a novel, efficient, and utmost versatile model for tracking large numbers 
(≥ (105)) of initially spherical soft particles suspended in arbitrary flow conditions, by assuming affine transformation and arbitrary 
hyperelastic material behavior in combination with the point-particle approach. A detailed discussion on the efficiency of the novel 
model is presented in Appendix F of [33].

Note that in our previous work, see Wedel et al. [33], we employ the heretofore mostly overlooked pseudo-rigid body theory, as 
advocated by Cohen & Munchaster [34], as it perfectly matches the kinematic conditions of soft ellipsoidal micro-particles suspended 
in viscous flows. Without loss of generality, we presented our framework using a Neo-Hookean constitutive law. Due to its versatility, 
this model is the ideal launching pad to model more complex behaviors. Thus, in this work, we extend our framework to model 
initially non-spherical, i.e. ellipsoidal soft particles.

1.2. Pseudo-rigid body approach for soft micro-particles in dilute flows

As stated above, we employ the heretofore mostly overlooked pseudo-rigid body theory, [34], in combination with the 
point-particle approach with Lagrangian particle tracking. Recall that in general, pseudo-rigid bodies are characterized by affine 
deformation and thus can be interpreted as a first-order extension to the kinematics of rigid bodies. Employing state-of-the art 
computational solution of the Navier–Stokes equations in combination with the point-particle approach (particle surface and bulk is 
not discretized) enables comparatively low costs in tracking, [35], of a realistically large number (≥ (105)) of particles suspended in 
arbitrary flow fields. Note that this is in strong contrast to the methods otherwise available in the soft particle literature, which rely 
on particle discretization and thus are strongly limited with respect to the number of particles that can be considered simultaneously.

To track soft particles of ellipsoidal shape dilutely dispersed in arbitrary flow fields, we employ a global–local, i.e. two-scale 
framework. The decomposition into global and local scales is possible, as we assume a one-way coupling, and thus the flow-field is 
updated independently of the particulate phase. The global problem at the macro-scale is identical to our recent approach (see Wedel 
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Fig. 1. Sketch of the novel pseudo-rigid body approach to the non-linear dynamics of soft micro-particles in viscous flow. Tracking soft micro-particles in flows 
is treated as a global–local, i.e. two-scale problem. In the macro-scale problem (global characteristic length 𝑙glob) we solve for the flow field without accounting 
for the particle phase, i.e. one-way coupling approach. Then, the flow velocity 𝒖𝑛+1 and the velocity gradient 𝒍𝑛+1f  at the current particle center 𝒙c are obtained. 
On the micro-scale (local characteristic length 𝑙loc with 𝑙loc ≪ 𝑙glob) there are two separate problems. The first is denoted as shape dynamics and consists of 
finding the distortion 𝑭 𝑛+1 to obtain the new particle shape, i.e. 𝑭̄ 𝑛+1 = 𝑭 𝑛+1 ⋅ 𝑺 with 𝑺 the shape and orientation tensor. Given the new particle shape (𝑭̄ 𝑛+1), 
we can solve the second local problem, i.e. the barycentric dynamics, where we update the particle position 𝒙c using established force models 𝒇 according to 
Brenner, [36]. In the next time step, we first update the flow field (neglecting the particle influence on the fluid, since we consider one-way coupling). Next 
we can identify the new flow velocity 𝒖𝑛+1 and the velocity gradient 𝒍𝑛+1f  at the particle position 𝒙𝑛+1

c , which are required inputs for the shape and barycentric 
dynamics.

et al. [33]). Here, we update the fluid flow quantities at a given time step in the flow field (macro-scale) independently of the soft 
particles. The local problem is at the micro-scale and can be decomposed in two subsequent problems. We denote the first problem 
at the micro-scale the shape problem. Here, we first define the initial ellipsoidal shape and orientation 0 from a reference sphere 
̄0 and a shape and orientation tensor 𝑺. Next, we compute the deformed particle shape 𝑡 for the given initial ellipsoidal shape 
0 and for given tractions 𝒕𝑡 exerted by the fluid flow on the particle, see Fig.  1. After obtaining the deformed particle shape 𝑡
at the current time step, we proceed with the second local problem at the micro-scale, which consists of computing the particle’s 
time-discrete barycenter trajectory using established force models for the deformed particle shape 𝑡. We want to highlight that at 
the local scale, the Reynolds numbers are typically well below one, thus we safely assume local Stokes flow around the suspended 
particles.

The notation in this work is based on our previous work, see [33], for convenience, it is recapitulated in Appendix. Furthermore, 
in order to simplify the notation as much as possible, we only use super- or subscripts (∙)s, (∙)s and (∙)f , (∙)f  indicating whether a 
property (superscript) or kinematic quantity (subscript) (∙) refers to the solid or the fluid embedding it if there is otherwise a risk 
of confusion.

2. Pseudo-rigid body dynamics

To set the stage, we briefly recall the dynamics of pseudo-rigid bodies as proposed by Cohen and Muncaster [34].

2.1. Kinematics of a pseudo-rigid body

Let a solid continuum body consisting of physical points 𝑃  be denoted as 𝐵 = {𝑃 }, with the reference configuration ̄0 (here a 
unit sphere), the material configuration   (stress-free) and the spatial configuration   (deformed). Note that the spatial positions 
0 𝑡
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Fig. 2. Example of a pseudo-rigid body: Affine deformation of an ellipsoid into an ellipsoid. Notation: Initial ellipsoid (material configuration) with half axes 
𝑅𝑎 deforming into an ellipsoid with half axes 𝑟𝑎 with 𝑎 = 1, 2, 3; Relative reference, material and spatial positions 𝜩̄, 𝜩 and 𝝃 connecting the barycenter with 
the reference, material and spatial positions 𝑿̄ in the reference configuration ̄0, 𝑿 in the material configuration 0 and 𝒙 in the spatial configuration 𝑡, 
respectively, of a pseudo-rigid body; Lagrangian principal directions 𝑵̄𝑎 in the reference configuration ̄0 and Eulerian principal directions 𝒏𝑎 in the spatial 
configuration 𝑡 with 𝑎 = 1, 2, 3. Fixed inertial frame of reference 𝑬𝑎 with 𝑎 = 1, 2, 3 (iFoR).

𝒙 ∈ 𝑡 of the physical points 𝑃  are obtained by applying the deformation map 𝒙 = 𝒚̄(𝑡, 𝑿̄), i.e. a nonlinear vector-valued function of 
time and space, to the reference positions 𝑿̄ ∈ ̄0 of the physical points 𝑃 . Furthermore, let 𝜌̄s0, 𝜌s0 and 𝜌s𝑡 denote the mass density 
(of the solid material) per unit volume in ̄0 (a scalar-valued function of 𝑿̄), per unit volume in 0 (a scalar-valued function of 𝑿) 
and per unit volume in 𝑡 (a scalar-valued function of 𝒙), respectively.

Fig.  2 sketches the affine deformation of an ellipsoid in the stress-free material configuration 0 into a deformed ellipsoid in 
the spatial configuration 𝑡 by using a reference unit sphere in the reference configuration ̄𝑡 in combination with a shape and 
orientation tensor 𝑺.

The material positions 𝑿 of a pseudo-rigid body expand as 

𝑿 = 𝑿c + 𝜩 with 𝜩 ∶= 𝑿 −𝑿c and the barycenter condition ∫0

𝜌s0 𝜩 d𝑉 ≡ 𝟎 , (1)

where 𝑿c denotes the material position of its barycenter, 𝜩 the relative material position and d𝑉  the material volume element. 
Followingly, the deformation map 𝒚(𝑡,𝑿) of a pseudo-rigid body is a superposition of its barycenter motion 𝒙c = 𝒚c(𝑡) and its shape 
change 𝝃(𝑡,𝜩) and expands as 

𝒙 = 𝒚(𝑡,𝑿) = 𝒚c(𝑡) + 𝝃(𝑡,𝜩) with 𝑿c = 𝒚c(𝑡 = 0) and 𝝃 ∶= 𝑭 (𝑡) ⋅ 𝜩 with 𝟏 = 𝑭 (𝑡 = 0) , (2)

where the shape change 𝝃(𝑡,𝜩) is an affine deformation depending on the spatially uniform deformation gradient 𝑭 (𝑡) and the 
relative material positions 𝜩, whereby 𝟏 denotes the (two-point) unit tensor.

The spatial volume element is obtained using the Jacobian 𝐽 ∶= det 𝑭 > 0 of the deformation gradient as d𝑣 = 𝐽 d𝑉  which 
can be likewise applied to the relation of the total volumes occupied by the pseudo-rigid body in the spatial (vol(𝑡)) and material 
(vol(0)) configuration, i.e. vol(𝑡) = 𝐽 vol(0), as 𝐽 is spatially uniform. To describe the velocities of the physical points 𝑃  of the 
pseudo-rigid body, we evaluate the material time derivative (at fixed 𝑿) of the deformation map which expands as 

𝒗 ∶= 𝒗c(𝑡) + 𝝊(𝑡,𝜩) with 𝒗c ∶= 𝒚̇c(𝑡) and 𝝊 ∶= 𝝃̇(𝑡,𝜩) = 𝑭̇ (𝑡) ⋅ 𝜩 =∶ 𝑨(𝑡) ⋅ 𝜩 . (3)

Observe that we abbreviate the material velocity gradient 𝑭̇  as 𝑨 ∶= 𝑭̇ . The deformation map of the unit sphere to the material 
configuration consists only of an affine shape change contribution 𝜩(𝜩̄) and thus expands as 

𝜩 ∶= 𝑺 ⋅ 𝜩̄ with 𝑺 ∶=
∑

𝑅𝑎𝑬′
𝑎 ⊗ 𝑬̄𝑎 , (4)
𝑎
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where 𝑅𝑎 denote the semi-axis of the initially stress-free ellipsoidal particle in 0. Inserting 𝜩 ∶= 𝑺 ⋅ 𝜩̄ in Eq. (2), the deformation 
map of the unit sphere to the spatial configuration expands as 

𝒙 = 𝒚c(𝑡) + [𝑭 (𝑡) ⋅ 𝑺] ⋅ 𝜩̄ . (5)

2.2. Barycenter dynamics

The Euler–Lagrange equation governing the barycenter dynamics of a pseudo-rigid body results as 

𝒗̇c 𝑚 = 𝒇 with 𝒇 ∶= ∫0

𝒃0 d𝑉 + ∫𝜕0

𝒕0 d𝐴 (6)

with 𝒇 denoting the resultant of the conservative bulk and surface force densities 𝒃0 and 𝒕0, respectively.

2.3. Shape dynamics

The Euler–Lagrange equation governing the shape dynamics of a pseudo-rigid body expands as 

𝑨̇ ⋅𝜣 + 𝑷 vol(0) = 𝑴 with 𝑴 ∶= ∫0

𝒃0 ⊗ 𝜩 d𝑉 + ∫𝜕0

𝒕0 ⊗ 𝜩 d𝐴 . (7)

where the right-hand side denotes the corresponding force dyad 𝑴 (resultant of the dyadic moment of the bulk and surface force 
densities with 𝜩) and 𝑷  the Piola stress.

In addition, we define the total mass 𝑚 and the material Euler tensor 𝜣 of the pseudo-rigid body as 

𝑚 ∶= ∫0

𝜌s0 d𝑉 and 𝜣 ∶= ∫0

𝜌s0 𝜩 ⊗ 𝜩 d𝑉 . (8)

2.4. Constitutive behavior

Without loss of generality, we will assume in the following a quasi-incompressible Neo-Hooke stored energy density 𝑤0 = 𝑤0(𝑭 ), 
resulting in the Piola stress 𝑷 = 𝜕𝑤0∕𝜕𝑭  expanding as 

𝑷 = 𝜇s [𝑭 − 𝑭 −𝑡] + 𝜆s ln 𝐽 𝑭 −𝑡 . (9)

Here, 𝜆s and 𝜇s denote the first and second Lamé parameter respectively with 𝜆s → ∞ describing the incompressible limit. The 
transition from the pseudo-rigid body shape dynamics equation to the common equations of motion of a rigid body are detailed in 
our previous work, see [33].

3. Resultant loading on a pseudo-rigid body of ellipsoidal shape

For spatially uniform mass-specific bulk force density 𝒂 (with the dimension of an acceleration) the corresponding contribution 
to 𝒇 simplifies to 𝒂𝑚. Observe that the traction 𝒕0 = 𝒕̄0 + 𝒕̃0 can be decomposed into a constant vector 𝒕̄0 (its surface average), and 
a fluctuation contribution 

𝒕̄0 ∶=
1

sur(𝜕0) ∫𝜕0

𝒕0 d𝐴 and 𝟎 ≡ ∫𝜕0

𝒕̃0 d𝐴 , (10)

with sur(𝜕0) denoting the surface area of the pseudo-rigid body in its material configuration. By integrating over the particle surface, 
the fluctuation contribution vanishes, [33], and the corresponding contribution to 𝒇 thus simplifies to ̄𝒕0 sur(𝜕0), here captured by 
the Brenner drag force. Furthermore, the contribution of the traction 𝒕0 to the force dyad 𝑴 depends on its fluctuation ̃𝒕0 only, that 
is 

𝑴 = ∫𝜕0

𝒕̃0 ⊗ 𝜩 d𝐴 . (11)

3.1. Jeffery-Roscoe traction

Following, our previous work, see [33], a spatially uniform (constant) Cauchy-type stress 𝝈̃ can be obtained analytically from 
the Roscoe-Jeffery traction (𝒕̃𝑡 = 𝝈̃ ⋅ 𝒏) expressions for an ellipsoidal body immersed in Stokes flow and reads as 

𝝈̃ = −𝑝̃(𝒅) 𝒊 + 𝜇f [𝒔̃(𝒅,𝒘) + 2𝒅s] . (12)

Here, 𝑝̃ and 𝒔̃ are a spatially constant factor and a spatially constant (non-symmetric) and deviatoric second-order tensor, (both 
depending on the current ellipsoid shape in the spatial configuration), respectively. Furthermore, 𝒅 ∶= 𝒅f −𝒅s denotes the modified 
rate of deformation tensor and 𝒘 ∶= 𝒘f − 𝒘s the modified spin (vorticity tensor). Note that 𝒅s ∶= 𝒍syms  and 𝒘s ∶= 𝒍skws  (with 
𝒍s ∶= 𝑨⋅𝑭 −1 the spatial velocity gradient of the solid) denote the deformation tensor and the vorticity tensor of the solid, respectively. 
Furthermore, 𝒅f ∶= 𝒍symf  and 𝒘f ∶= 𝒍skwf  denote the deformation tensor and the vorticity tensor of the fluid, respectively. The terms 
̃(𝒅) and 𝒔̃(𝒅,𝒘) can be evaluated in a similar fashion as proposed by Jeffery [7], and are detailed in our previous work [33].
5 
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3.2. Resultant force

In consistency with our previous work, we assume a locally small Stokes number, i.e. St ≪ 1, around the particle, and thus the 
resultant force 𝒇 exerted on an ellipsoid in a viscous fluid is the reduced gravity force (reduced by buoyancy) 𝒇G as well as the 
drag force 𝒇D, i.e. 𝒇 = 𝒇G + 𝒇D. The reduced gravity force (reduced by buoyancy) reads as 

𝒇G = 𝒂G𝑚 = [𝜌s𝑡 − 𝜌f ] 𝒈 vol(𝑡)with 𝑚 = 𝜌s𝑡 vol(𝑡) , (13)

while the drag force (𝒇D) model by Brenner, [36], applicable for arbitrarily shaped bodies expands as 
𝒇D = 𝒕̄𝑡 sur(𝜕𝑡) = 𝜋 𝜇f 𝑟min𝒌 ⋅ [𝒖 − 𝒗c] . (14)

Here, the dynamic viscosity is 𝜇f , the semi-minor axis is 𝑟min and the translational resistance tensor is 𝒌, with its coefficients detailed 
in our previous work, [33]. Furthermore, the fluid velocity at the barycenter of the ellipsoid and its barycentric velocity are denoted 
as 𝒖 and 𝒗c, respectively.

3.3. Resultant force dyad

In the case of spatially uniform mass-specific bulk force density 𝒂, the resultant force dyad 𝒎 = 𝑴 ⋅ 𝑭 𝑡 can be expanded as 

𝒎 = ∫𝜕𝑡

𝒕̃𝑡 ⊗ 𝝃 d𝑎 = ∫𝜕𝑡

[𝝈̃ ⋅ 𝒏]⊗ 𝝃 d𝑎 = ∫𝜕𝑡

[𝝃 ⊗ 𝝈̃ ⋅ d𝒂]𝑡 = ∫𝑡

[div(𝝃 ⊗ 𝝈̃)]𝑡 d𝑣 = 𝝈̃ vol(𝑡) , (15)

where d𝒂 ∶= 𝒏 d𝑎 denotes the vectorial area element on 𝜕𝑡. The resultant force dyad 𝒎 can be further parametrized in terms of 
vol(0) by introducing the Kirchhoff-type stress 𝝉̃ ∶= 𝐽 𝝈̃ as 𝒎 = 𝝉̃ vol(0). Finally, we can express the resultant force dyad 𝑴 = 𝒎⋅𝑭 −𝑡

as 
𝑴 = 𝑷̃ vol(0) with 𝑷̃ ∶= 𝝉̃ ⋅ 𝑭 −𝑡 . (16)

Note that by using (Jeffery and) Roscoe expressions for the traction (fluctuation) 𝒕̃𝑡 exerted on an ellipsoidal body immersed in 
Stokes flow, expressions for 𝝈̃ and consequently 𝝉̃ and 𝑷̃  can be derived as detailed in our previous work, [33].

4. Time stepping for barycentric and shape dynamics

For soft ellipsoidal particles suspended in Stokes flow, the barycentric and shape dynamics equations are consistent with our 
previous work, [33], and read as 

𝒙̇c = 𝒗c , 𝒗̇c = 𝒂G + 𝒂D =
𝜌s𝑡 − 𝜌f

𝜌s𝑡
⏟⏟⏟

𝛽𝑡

𝒈 +
[ 1
𝑚

𝜈f𝜌f𝜋𝑟min

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
1∕𝜏D

𝒌 ⋅ [𝒖 − 𝒗c] , (17)

and 
𝑭̇ = 𝑨 , 𝑨̇ = vol(0) [𝑷̃ − 𝑷 ] ⋅𝜣−1 , (18)

respectively. Note that here 𝛽𝑡 and 𝜏D denote the buoyancy-induced gravity reduction and the characteristic drag time, respectively. 
In the following, we detail the time stepping algorithm for the integration of the barycentric and shape dynamics equations of motion 
in discrete time steps 𝛥𝑡 ∶= 𝑡𝑛+1−𝑡𝑛, with 𝑡𝑛+1 and 𝑡𝑛 discrete time points, over 𝑁 discrete time steps 𝛥𝑡, i.e. over a finite time interval 
𝑇 ∶= ∪𝑁−1

𝑛=0 [𝑡𝑛+1 − 𝑡𝑛]. At the discrete time point 𝑡𝑛 we assume the barycenter position 𝒙𝑛𝑐 , the barycenter velocity 𝒗𝑛𝑐 , the deformation 
gradient 𝑭 𝑛 as well as the material velocity gradient 𝑨𝑛 of the pseudo-rigid body to be given. Note that to describe the external 
loading for the time step 𝛥𝑡, we assume the fluid velocity 𝒖𝑛+1 together with the spatial fluid velocity gradient 𝒍𝑛+1f =∶ 𝒅𝑛+1

f +𝒘𝑛+1
f

at the discrete time point 𝑡𝑛+1 to be given.
The barycenter dynamics for initially ellipsoidal particles are obtained similarly as presented in our previous work, see [33]. The 

barycenter position 𝒙𝑐 and the barycenter velocity 𝒗c are obtained using an implicit Euler backwards time integrator over 𝛥𝑡 as 

𝒙𝑛+1𝑐 = 𝒙𝑛𝑐 + 𝛥𝑡 𝒗𝑛+1𝑐 and 𝒗𝑛+1c = 𝒗𝑛c + 𝛥𝑡 [𝛽𝑛+1𝑡 𝒈 + 1
𝜏D

𝒌𝑛+1 ⋅ [𝒖𝑛+1 − 𝒗𝑛+1c ]] , (19)

with 
𝛽𝑛+1𝑡 ∶= 𝛽𝑡(𝑭̄

𝑛+1) and 𝒌𝑛+1 ∶= 𝒌(𝑭̄ 𝑛+1) with 𝑭̄ 𝑛+1 = 𝑭 𝑛+1 ⋅ 𝑺 . (20)

Note that 𝑭  describes the distortion, while 𝑭̄ 𝑛+1 additionally depends on 𝑺, the shape and orientation tensor. Employing 𝑺 enables 
the modeling of pseudo-rigid bodies of initially ellipsoidal shape with arbitrary initial orientation. Observe that 𝑺 is constant 
throughout all time steps and only depends on the chosen shape and orientation of the initial ellipsoid.

The particle shape dynamics for initial ellipsoidal particles are obtained in the same fashion as presented in our previous work, 
see [33], using an implicit–explicit time integrator over 𝛥𝑡 to update the elastic shape contribution 𝑭  as 

𝑭 𝑛+1 = 𝑭 𝑛 + 𝛥𝑡𝑨𝑛+1 and 𝑨𝑛+1 = 𝑨𝑛 + 𝛥𝑡 vol( ) [𝑷̃ ⋆ − 𝑷 𝑛+1] ⋅𝜣−1 . (21)
0
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Observe the implicit update of the Piola stress 𝑷 𝑛+1 and the implicit–explicit update (indicated by a superscript star) of the Piola-type 
stress 𝑷̃ ⋆ as 

𝑷 𝑛+1 ∶= 𝑷 (𝑭 𝑛+1) and 𝑷̃ ⋆ ∶= 𝐽 𝑛+1 𝝈̃⋆(𝑭 𝑛,𝑨𝑛,𝑺; 𝒍𝑛+1f ) ⋅ [𝑭 𝑛+1]−𝑡 , (22)

Note that the implicit–explicit update of the Cauchy-type stress 𝝈̃⋆ is modified for initially ellipsoidal particles compared to initially 
spherical particles as it depends additionally on the constant shape and orientation tensor 𝑺 to account for the initially ellipsoidal 
particle shape. Observe the dependence of 𝝈̃⋆ on 𝑭̄ 𝑛 = 𝑭 𝑛 ⋅ 𝑺 via 𝒏𝑛𝑎 and 𝜆𝑛𝑎 to update the ellipsoid shape and orientation, i.e. the 
particle frame of reference (pFoR) with the rotation matrix 𝑄𝑛 ∶= [𝑄𝑛

𝑎𝐵] = [𝒏𝑛𝑎 ⋅ 𝑬𝐵], 𝑎, 𝐵 = 1, 2, 3 and the ellipsoid’s half axes 
𝑟𝑛𝑎 = 𝜆𝑛𝑎 𝑅, 𝑎 = 1, 2, 3, where 𝑅 = 1 denotes the radius of the reference unit sphere. Identical to our previous work, [33], 𝝈̃⋆ depends 
on the contribution 𝑭 𝑛 and 𝑨𝑛 via the spatial solid velocity gradient 𝒍𝑛s = 𝑨𝑛 ⋅ [𝑭 𝑛]−1 with coefficients 𝑙′s𝑛𝑎𝑏 in the pFoR defined as 
𝑙′s
𝑛
𝑎𝑏 ∶= 𝒏𝑛𝑎 ⋅ 𝒍

𝑛
s ⋅𝒏

𝑛
𝑏 as well as the fluid velocity gradient 𝒍𝑛+1f  representing the external loading for 𝛥𝑡. Note that 𝒍𝑛+1f  has the coefficients 

𝑙′f
⋆
𝑎𝑏 in the pFoR defined as 𝑙′f⋆𝑎𝑏 ∶= 𝒏𝑛𝑎 ⋅ 𝒍

𝑛+1
f ⋅ 𝒏𝑛𝑏

5. Algorithm: Implicit-explicit time integrator

The step-by-step algorithm for the implicit–explicit time integrator for the shape dynamics of a pseudo-rigid body of initially 
ellipsoidal shape in the material configuration based on the deformation gradient is similar to the algorithm presented for initially 
spherical shape in our previous work, see [33]. Differences occur as we need to not only account for the distortion 𝑭 𝑛 but rather 
for the total distortion 𝑭̄ 𝑛 = 𝑭 𝑛 ⋅ 𝑺. The modified algorithm is provided in the following.
Initialize First Increment :

• Set 𝒙0c = 𝟎, 𝒗0c = 𝟎 and 𝑭 0 = 𝟏, 𝑨0 = 𝟎
• Set ellipsoidal shape and orientation: 𝒏0𝑎, 𝑄0

𝑎𝐵 , 𝑺 ∶=
∑

𝑎 𝑅𝑎𝑬′
𝑎 ⊗ 𝑬̄𝑎 and 𝑟0𝑎, 𝑎, 𝐴, 𝐵 = 1, 2, 3

• Compute Euler tensor 𝜣 = 𝑚
5 𝑺 ⋅ 𝑺𝑇  in the material configuration

• Compute vol(0) = det𝑺vol(̄0) with vol(̄0) =
4
3𝜋𝑅

3 and 𝑅 = 1

Increment Loop 𝑛 = 0,… , 𝑁 − 1

Pre-Process Increment:

• Read given fluid velocity and its spatial gradient from flow simulator 𝒖𝑛+1 and 𝒍𝑛+1f
• Compute coefficients in pFoR 𝑙′f⋆𝑎𝑏 = 𝒏𝑛𝑎 ⋅ 𝒍

𝑛+1
f ⋅ 𝒏𝑛𝑏, 𝑎, 𝑏 = 1, 2, 3

• Compute spatial solid velocity gradient 𝒍𝑛s = 𝑨𝑛 ⋅ [𝑭 𝑛]−1

• Compute coefficients in pFoR 𝑙′s𝑛𝑎𝑏 = 𝒏𝑛𝑎 ⋅ 𝒍
𝑛
s ⋅ 𝒏

𝑛
𝑏, 𝑎, 𝑏 = 1, 2, 3

• Compute Cauchy-type stress 𝝈̃⋆ = 𝝈̃(𝑟𝑛𝑎, 𝑙
′
s
𝑛
𝑎𝑏, 𝑄

𝑛
𝑎𝐵 ; 𝑙

′
f
⋆
𝑎𝑏) with 𝜎̃⋆𝐴𝐵 = 𝜎̃′⋆𝑚𝑛 𝑄

𝑛
𝑚𝐴 𝑄𝑛

𝑛𝐵 , 𝑎, 𝐴, 𝐵, 𝑚, 𝑛 = 1, 2, 3

Process Increment:

• Update distortion 𝑭 𝑛+1 = arg
{

𝑭 𝑛+1 − 𝑭 𝑛 − 𝛥𝑡𝑨𝑛 − 𝛥𝑡2 vol(0)
[

𝑷̃ ⋆(𝑭 𝑛+1; 𝝈̃⋆) − 𝑷 (𝑭 𝑛+1)
]

⋅𝜣−1 ≐ 𝟎
}

• Update total distortion 𝑭̄ 𝑛+1 = 𝑭 𝑛+1 ⋅ 𝑺
• Update mass-specific reduced gravity force using the total distortion: 𝒂𝑛+1G = 𝛽𝑡(𝑭̄

𝑛+1) 𝒈
• Update Eulerian principal directions using 𝑭̄ 𝑛+1: 𝒏𝑛+1𝑎 = eigenvec

{

𝑭̄ 𝑛+1 ⋅ [𝑭̄ 𝑛+1]𝑡
}

, 𝑎 = 1, 2, 3

• Update rotation matrix from iFoR to pFor 𝑄𝑛+1
𝑎𝐵 = 𝒏𝑛+1𝑎 ⋅ 𝑬𝐵 , 𝑎, 𝐵 = 1, 2, 3

• Update principal values using 𝑭̄ 𝑛+1: 𝜆𝑛+1𝑎 = eigenval
{

𝑭̄ 𝑛+1 ⋅ [𝑭̄ 𝑛+1]𝑡
}

, 𝑎 = 1, 2, 3

• Update half axes 𝑟𝑛+1𝑎 = 𝜆𝑛+1𝑎 , 𝑎 = 1, 2, 3
• Update drag resistance tensor 𝒌𝑛+1 = 𝒌(𝑟𝑛+1𝑎 , 𝑄𝑛+1

𝑎𝐵 ) with 𝑘𝑛+1𝐴𝐵 = 𝑘′𝑛+1𝑚𝑛 𝑄𝑛+1
𝑚𝐴 𝑄𝑛+1

𝑛𝐵 , 𝑎, 𝐴, 𝐵, 𝑚, 𝑛 = 1, 2, 3
• Update barycenter position 𝒙𝑛+1c = [𝒊 + 𝛥𝑡∕𝜏D 𝒌𝑛+1]−1 ⋅

[

𝒙𝑛c + 𝛥𝑡 𝒗𝑛c + 𝛥𝑡2 𝒂𝑛+1G + 𝛥𝑡∕𝜏D 𝒌𝑛+1 ⋅ [𝛥𝑡 𝒖𝑛+1 + 𝒙𝑛c ]
]

Post-Process Increment: 
• Update 𝒗𝑛+1c = [𝒙𝑛+1c − 𝒙𝑛c ]∕𝛥𝑡
• Update 𝑨𝑛+1 = [𝑭 𝑛+1 − 𝑭 𝑛]∕𝛥𝑡

Initialize Next Increment :

• Set 𝒙𝑛c←𝒙𝑛+1c , 𝒗𝑛c←𝒗𝑛+1c  and 𝑭 𝑛←𝑭 𝑛+1, 𝑨𝑛←𝑨𝑛+1 and 𝒏𝑛𝑎←𝒏𝑛+1𝑎 , 𝑄𝑛
𝑎𝐵←𝑄𝑛+1

𝑎𝐵 , 𝑟𝑛𝑎←𝑟𝑛+1𝑎 , 𝑎, 𝐵 = 1, 2, 3

End Increment Loop
Note that the employed Newton Raphson scheme to update the distortion 𝑭 𝑛+1 converges quadratically and typically in 3 iterations 
to take the residual below 1e−12.
7 
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6. Demonstrative examples

In the following, we will first validate our extended model using experimental and numerical studies from the literature for 
quasi-rigid and soft ellipsoidal particles. This is followed by a comparison of the effects of deformability for some well-known fluid 
flow cases, such as a laminar pipe flow (Re = 137 and Stk = 0.01), a lid-driven cavity flow (Re = 470 and Stk = 0.0023) and a simplified 
bifurcation (Re = 500 and Stk = 0.5 × 10−2 − 0.5). Throughout the demonstrative examples (unless explicitly stated otherwise), the 
characteristic scales for non-dimensionalization are the length scale 𝑑eq (initial volume-equivalent particle diameter), the time scale 
𝛾̇−1 (inverse fluid shear rate) and the fluid pressure/stress scale 𝜇f 𝛾̇. Here, 𝜇f  denotes the dynamic viscosity of the fluid. In the 
following, we use the capillary number Ca to quantify the softness of the particle, which represents the ratio of the viscous forces 
in the fluid to the elastic forces in the particle, [30] as 

Ca =
𝜇f 𝛾̇
𝜇s

. (23)

with 𝜇s denoting the particle shear modulus. Note that a larger Ca value is associated with a softer particle, [30]. Furthermore, we 
can define the particle shear Reynolds number using the fluid shear rate 𝛾̇ as 

Re𝛾̇ =
𝛾̇ 𝑑2eq
𝜈f

. (24)

Note that a key assumption of the Jeffery-Roscoe solution is creeping flow with Re𝛾̇ ≪ 1 locally.
In addition, Stk denotes the Stokes number, which describes the ratio of the characteristic particle response time 𝜏p to a 

characteristic time of the flow 𝜏f . The Stokes number of a particle with volume equivalent sphere diameter 𝑑eq is defined as 

Stk = 𝜏p

𝜏f
=

𝜌p

𝜌f
𝑑2eq𝑈

18𝜈f𝐿
. (25)

The characteristic time scales of the particle 𝜏p and the flow 𝜏f  are defined as follows: 

𝜏p =
𝜌p

𝜌f
𝑑2eq
18𝜈f

, 𝜏f = 𝐿
𝑈

, (26)

where 𝐿 and 𝑈 denote a characteristic length and velocity of the flow problem, respectively. Note that we neglect the pressure 
gradient and added mass force as we assume that 𝜌p ≫ 𝜌f  and/or Stk ≪ 1.

6.1. Shape dynamics of soft ellipsoidal particles in simple shear flow

In this section, we study the dynamics of neutrally buoyant deformable ellipsoidal particles suspended in a simple shear flow. 
As observed in our previous work [33], and by other authors, [29,30], initially spherical particles, when suspended in simple shear 
flow, can reach a steady state in shape and orientation. This is not the case for soft particles with an initially ellipsoidal shape. It 
is known, [21,31] that ellipsoidal particles, when suspended in simple shear flow, exhibit either trembling (TR) or tumbling (TU) 
dynamics. Tumbling dynamics occur when the elastic forces in the particle, which tend to preserve the initial ellipsoidal particle 
shape, are sufficiently strong compared to the hydrodynamic forces, i.e. the major axis of the deformed particle appears to oscillate 
between two angles. On the other hand, trembling dynamics occurs when the hydrodynamic forces become sufficiently strong 
compared to the elastic forces, i.e. the major axis of the particle appears to perform a complete (however unsteady) rotation. Note 
that all material lines are in constant rotation, thus the TU and TR regime can visually only be distinguished by the apparent motion 
of the long axis of the particle. In general, TU and TR can be distinguished by observing the lengths of two material lines 𝑙𝑎 and 𝑙𝑐 , 
which initially coincide with the semi-axes in the shear plane, i.e. 𝑟1 and 𝑟3, where we use the definition 𝑟1 ≥ 𝑟2 ≥ 𝑟3. Due to the 
constant deformation of the material inside the deforming particle, both lines continue to rotate in the same direction according to 
the solid spin tensor 𝒘𝑠. If a particle exhibits tumbling dynamics, the length of 𝑙𝑎 will always be larger than 𝑙𝑐 . In this case, the 
particle major axis in the shear plane appears to perform full rotations. However, if at any time 𝑙𝑐 > 𝑙𝑎, the observed major axis does 
not perform a full rotation and appears to oscillate between two orientations. This dynamic behavior is referred to as trembling. 
Using these two dynamic behaviors, a phase diagram can be constructed in which the phase boundary is consequently defined when 
at any point in time 𝑙𝑐 = 𝑙𝑎.

6.1.1. Dynamics of oblate ellipsoids suspended in simple shear flow
First, we investigate the shape dynamics of oblate ellipsoids (𝜆1 = 𝜆2) suspended in simple shear flow. As a reference, we use 

the results of Sanagavarapu et al. [21]. We validate our model by reproducing the study of [21] for oblate particles suspended in 
simple shear flow. In this context, we set the initial particle orientation such that the particle plane 𝑬′

1 −𝑬′
3 lies in the shear plane 

𝑬1 − 𝑬2 and 𝑬′
3 = 𝑬2 and consequently 𝑬′

1 = −𝑬1. This corresponds to the setup used in [21]. For the sake of clarity, the setup is 
visualized in Fig.  3.

Observe that the initial particle major semi-axis 𝑟1 and minor-semi axis 𝑟3 lie in the shear plane. In the scope of our work, we 
use 𝑟1 ≥ 𝑟2 ≥ 𝑟3 and thus the aspect ratio as 𝜆1 = 𝑟1∕𝑟3 and 𝜆2 = 𝑟2∕𝑟3 with 𝜆1 ≥ 𝜆2. In the work of [21], however, the in-shear 
plane aspect ratio 𝜔1 and the out-of-shear plane aspect ratio 𝜔2 are given to describe the shape dynamics. Note that for the initially 
oblate particle chosen with the initial particle plane 𝑬′ −𝑬′  in the shear plane 𝑬 −𝑬 , 𝜔 (𝑡 = 0) initially coincides with 𝜆 (𝑡 = 0).
1 3 1 2 1 1
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Fig. 3. Schematic visualization of the semi-axis lengths and orientations of the principal axes of the employed initially oblate particle. The particle frame of 
reference is labeled 𝑬′

𝑖 and the global frame of reference is labeled 𝑬𝑖 with 𝑖 = 1, 2, 3. The particle semi-axis lengths are denoted as 𝑟𝑖, 𝑖 = 1, 2, 3. Note that we 
employ 𝑟1 ≥ 𝑟2 ≥ 𝑟3. The material points A, B, C are initially located on the semi-axis.

Fig. 4. Dynamics of an initially oblate ellipsoid exhibiting trembling and tumbling dynamics with an initial in-shear plane aspect ratio of 𝜔1(𝑡 = 0) = 2.5 (initial 
out of-shear plane aspect ratio 𝜔2(𝑡 = 0) = 2.5). Note that the types of dynamics exhibited are denoted either by TR for trembling or TU for tumbling. Present 
model results: Ca = 0.4, Ca = 0.5. Reference results are presented using symbols in the respective color of the present model. In (a) we insert a picture of 
the particle shape at 𝑡 ≈ 7, while in (b) we display the particle shape at 𝑡 ≈ 7.5. These particle shapes coincide with the maximum 𝜔𝛼 for the respective particle 
softness. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The examined oblate particles have an initial in-shear/out-of-shear plane aspect ratio of 𝜔1(𝑡 = 0) = 𝜔2(𝑡 = 0) = 2.5. The softness 
parameter of the particles is selected as Ca = 0.4 or Ca = 0.5, whereby the first leads to TU dynamics, while the second results 
in TR dynamics, [21]. Fig.  4(a,b) illustrates the dynamic behavior of the in-shear/out-of-shear plane aspect ratios 𝜔𝛼 , 𝛼 = 1, 2 for 
Ca = 0.4 and Ca = 0.5, respectively. As shown in Fig.  4(a), we achieve perfect agreement in the transient deformation for the initially 
oblate particle in the TU regime compared to the results of [21]. Fig.  4(b) shows that the novel method is also able to reproduce 
the transient deformation behavior for initially oblate particles in the TR regime.

In the following, we present snapshots of the deformation of the particles in the shear plane over a time span of 𝑡 = 20 for the 
oblate particles under consideration. The black line represents the long axes of the particle. In addition, we highlight two material 
lines 𝑙𝑎 and 𝑙𝑐 , which initially coincide with the particle semi-axis in the shear plane. Note that we choose the color scheme so that 
the smaller material line is displayed in red, i.e. min(𝑙𝑎, 𝑙𝑐 ), while the longer line is colored in green, i.e. max(𝑙𝑎, 𝑙𝑐 ).

As highlighted, the deformation of the particles depends strongly on the softness of the particles. For particles with Ca = 0.4, the 
elongation of the particles is less than for particles with Ca = 0.5. Furthermore, we observe that the orientation of the particles is also 
slightly modified. However, we find that the orientations of the material lines are approximately identical, see the red (min(𝑙𝑎, 𝑙𝑐 )) 
and green (max(𝑙𝑎, 𝑙𝑐 )) line displayed in Fig.  5.

Next, we visualize the deformation of the particles to illustrate the difference between the tumbling and trembling regimes, see 
Fig.  6. Recalling the definition of the red and green material line, we find that for Ca = 0.5 at 23.5 < 𝑡 < 24, the lines’ coloring is 
9 
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Fig. 5. Snapshots of initially oblate ellipsoid of either (a) Ca = 0.4 (TU) or (b) Ca = 0.5 (TR) suspended in simple shear flow. The displayed time step are from 
left to right 𝑡 = [0, 2, 4, 6, 8]. Note that the types of dynamics exhibited are denoted either by TR for trembling or TU for tumbling. Here  highlights the 
particle’s major axis in the shear plane. The lines 𝑙𝑎 and 𝑙𝑐 pointing to the material point A and C, respectively, are highlighted with the following colors:  
max(𝑙𝑎,𝑙𝑐 ),  min(𝑙𝑎,𝑙𝑐 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Snapshots of initially oblate ellipsoid of either (a) Ca = 0.4 (TU) or (b) Ca = 0.5 (TR) suspended in simple shear flow. The displayed time step are 
from left to right 𝑡 = [22.5, 23, 23.5, 24, 24.5]. Note that the types of dynamics exhibited are denoted by either TR for trembling or TU for tumbling. Here  
highlights the particle major axis in the shear plane. The lines 𝑙𝑎 and 𝑙𝑐 pointing to the material point A and C, respectively, are presented with the following 
colors:  max(𝑙𝑎,𝑙𝑐 ),  min(𝑙𝑎,𝑙𝑐 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

reversed indicating that at some intermediate instance the length of the green and the red line are identical and thus trembling is 
observed.

Recall that in the TU regime, the length of 𝑙𝑎 will always be larger than 𝑙𝑐 , thus the particle semi-major axis 𝑟1 conducts full 
rotations. However, if at any instance 𝑙𝑐 > 𝑙𝑎, the major axis in the shear plane (black line) does not perform a complete rotation 
and appears to oscillate between two orientations, which is defined as TR dynamics.

6.1.2. Tumbling and trembling phase diagram for initially oblate/prolate particles suspended in simple shear flow
Since the switch between trembling and tumbling dynamics depends on the initial particle shape, i.e. the initial in-shear/out-

of-shear plane aspect ratio, as well as the particle softness Ca, it is useful to represent the different dynamic regimes in a phase 
diagram. Fig.  7 shows the phase diagram for initially prolate and oblate particles. Note that for comparison with the results of 
Sanagavarapu, [21] for initially prolate (and triaxial) particles, the two largest initial particle long axes 𝑟1 and 𝑟2 are located 
in the shear plane, while the particle minor axis 𝑟3 (𝑟2 = 𝑟3 for prolate particles) is located outside the shear plane. Note that 
Sanagavarapu, [21], defines the in-shear plane aspect ratio 𝜔1 for prolate (and triaxial) particles as the ratio of the smaller semi-
axis to the longer semi-axis in the shear plane. The out-of-shear plane aspect ratio 𝜔2 is defined as the ratio of the semi-axis outside 
the shear plane to the longer half-axis in the shear plane. This leads to 𝜔1(𝑡 = 0) ≤ 1 and 𝜔2(𝑡 = 0) = 1 for initially prolate ellipsoids.

As highlighted, we achieve an excellent agreement between the reference results, see  [21], and the results obtained with our 
novel soft particles model for ellipsoidal particles.

6.1.3. Initially triaxial particles suspended in simple shear flow
Finally, we suspend initially triaxial (𝑟1 ≠ 𝑟2 ≠ 𝑟3) ellipsoids in simple shear flow. As shown by Sanagavarapu et al. [21], the 

TU-TR phase boundary for soft triaxial ellipsoids is a two-dimensional surface since it depends on Ca, 𝜔1(𝑡 = 0) and 𝜔2(𝑡 = 0). As a 
reference, we employ the results reported by Sanagavarapu et al. [21]. Note that the authors provided the upper and lower bounds 
for the TU-TR phase boundary for different cross-sections of the phase diagram. Since their framework requires surface discretization 
and is therefore computationally much more intensive, Sanagavarapu et al. [21] chose larger discrete steps of 𝛥Ca = 0.05. Thus, their 
10 
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Fig. 7. Tumbling–trembling phase diagram of initially oblate and prolate ellipsoids suspended in simple shear flow. Note that the types of dynamics exhibited 
are denoted by TR for trembling or TU for tumbling.  Sanagavarapu et al. [21], /  present model. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Sections of the tumbling–trembling phase diagram of an initially triaxial ellipsoid in simple shear flow for either fixed (a) 𝜔1(𝑡 = 0) = 0.5 or (b) 
𝜔2(𝑡 = 0) = 0.5. The trembling and tumbling regime are labeled TR and TU, respectively.  Sanagavarapu et al. [21],  present model.

reported results can deviate from the true phase boundary by one step size (𝛥Ca = 0.05). Since our novel model is computationally 
highly efficient, we can choose a much smaller discretization step for Ca, i.e. 𝛥Ca = 0.005. Consequently, our results can deviate 
from the true phase boundary at most by 𝛥Ca = 0.005, i.e. we here achieve a ten times higher accuracy.

Fig.  8(a) presents the TU-TR phase diagram for soft initially ellipsoidal particles for the 𝜔1(𝑡 = 0) = 0.5 cross-section. As can be 
seen, the obtained phase boundary lies between the reported upper and lower bonds (Sanagavarapu et al. [21]). Fig.  8(b) displays the 
𝜔1(𝑡 = 0) = 0.5 cross-section of the TU-TR phase diagram. Again, it can be seen that our novel model can accurately capture the phase 
boundary between tumbling and trembling, as the results are enclosed by the upper and lower bounds reported by Sanagavarapu 
et al. [21]. Recall that the results were resolved with 10 times smaller 𝛥Ca steps than given in the references, as the present method 
requires significantly less computational effort. Therefore, the maximum deviation from the true phase diagram is reduced by a 
factor of 10 compared to the reference results.
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Fig. 9. Sketch of the circular tube and initial position of the particle in the cross-section. Observe that A is defined as the material point on the particle surface 
that is initially located at 𝑟1𝒆1. Note that the particle size is strongly enlarged for visualization purposes as 𝑑eq ≪ 𝐷.

Fig. 10. Direction cosines of a vector pointing from the barycenter to a material point A (see Fig.  9) located initially at the end of the semi-major axis of 
the prolate ellipsoidal particle for 𝜆1 = 14 for particles with different softness:  Cui et al. (𝑈max = 0.97 m∕s) [38], present model: Ca → 0, Ca = 0.01, 
Ca = 0.05, Ca = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.2. Soft particles suspended in laminar pipe flow

In this section, we use our novel approach to study soft ellipsoidal particles suspended in laminar pipe flow. The experimental 
study by Tian et al. serves as a reference, [37]. Here, the authors investigated a rigid ellipsoidal particle suspended in a laminar 
(air) flow (Re = 137 with 𝜌f = 1.208 kg∕m3 and 𝜈f = 1.491 × 10−5 mm2∕s) in a circular channel with length 𝐿 = 0.7m and diameter 
𝐷 = 4.2 mm. Cui et al. [38], numerically replicated the results of Tian et al. [37], and suggested an average inflow velocity of 
𝑈̄ = 0.485 m∕s to match the experimental results. The rigid ellipsoidal particle used in the reference literature has a prolate shape 
with semi-minor axis 𝑟3 = 0.5 μm and aspect ratio 𝜆 = 14. Using the resulting volume equivalent diameter 𝑑eq = 2.41 μm and the fluid 
velocity at the initial particle location 𝑢 = 0.371 m∕s, while assuming an initially zero particle velocity, we estimate a worst-case 
particle Reynolds number Re𝑝 = 𝑑eq𝑢∕𝜈f = 0.05. However, this worst-case estimate never occurs within the simulation, as the particle 
velocity is initialized with the local flow velocity. Consequently, the assumption Re𝑝 ≪ 1, required by the Jeffery-Roscoe model, is 
satisfied.

The density of the particle is given as 𝜌p = 2560 kg∕m3 (i.e. 𝜌p ≫ 𝜌f ) and its response time is 𝜏p = 0.046 ms with Stokes number 
of Stk = 0.01. The initial position of the particle is in the plane 𝑥1-𝑥2 with an initial position of 𝑥2 = −1.65 mm. The initial position 
and orientation of the particle are shown in Fig.  9. At the injection position, we evaluated the flow vorticity as 𝜔f = 726, 95 s−1.

Fig.  10(a,b) presents the obtained directional cosine values for quasi-rigid particles as well as soft particles obtained with our 
novel approach and the reference results of Cui et al. [38] for rigid particles. In the following, we present the direction cosine of 
the material line 𝑙𝑎 connecting the particle center to the material point A, see Fig.  9. The selected material line coincides with the 
particle semi-major axis of the initially prolate ellipsoidal particle at the beginning of the simulation. Note that only for quasi-rigid 
particles does the selected material line always coincide with the semi-major axis during the entire simulation.

As shown in Fig.  10(a,b), we find an excellent agreement of the direction cosines of the quasi-rigid particle Ca → 0 with the 
reference results. This confirms the ability of our novel soft particle approach to accurately capture the rotational motion of the 
investigated soft particles in the limit of a quasi-rigid body. By increasing the particle softness (Ca ↑), see Fig.  10(a,b), the deviations 
in the direction cosines of the material line 𝑙𝑎 vary increasingly compared to the quasi-rigid particle reference. We find that the softer 
the particle under consideration, the longer the orbital period of the investigated material line.

6.2.1. Influence of deformability on particle trajectory in laminar pipe flow
Next, we inject soft particles into the laminar pipe flow. The setup of the pipe flow is identical to that described in the previous 

section. Here we use soft initially prolate particles (𝜆 > 𝜆  and 𝜆 = 1). The particles are tracked until they are deposited. 
1 2 2
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Fig. 11. Comparison of trajectory of initially prolate ellipsoids of different particle softness suspended in pipe flow: Ca → 0, Ca = 0.2, Ca = 0.5, 
Ca = 0.9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Comparison of direction cosine of the material point A initially located on the particle semi major-axis to the 𝑥1 direction for initially prolate ellipsoids 
of different particle softness suspended in pipe flow: Ca → 0, Ca = 0.2, Ca = 0.5, Ca = 0.9. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig.  11(a) displays the particle trajectory of soft particles with an initial aspect ratio 𝜆1 = 3.5 for particles of different softness, 
i.e. Ca = [0, 0.2, 0.5, 0.9]. As observed, particles with increased softness travel significantly faster in the streamwise direction. 
We attribute this to soft particles exhibiting both tumbling and trembling dynamics (interplay of elastic restoring forces and 
hydrodynamic forces), while rigid ellipsoidal particles only exhibit tumbling motion. For example, particles with a softness of 
Ca = 0.25 move about 4500 𝑑eq further in the streamwise direction than their quasi-rigid counterpart (Ca → 0). For particles with 
Ca = 0.9, the deviations from the quasi-rigid reference increase to more than 35000 𝑑eq in the direction of flow. For soft particles 
with an initial aspect ratio 𝜆1 = 7 there is an identical trend, with softer particles moving further in the streamwise direction, 
see Fig.  11(b). Furthermore, we observe that an increase in the initial particle aspect ratio leads to an increase in the deviation 
between soft particles and their quasi-rigid reference in streamwise traveling direction. For example, particles with a softness of 
Ca = 0.25 and Ca = 0.9 travel more than 35000 𝑑eq and 313000 𝑑eq further in the flow direction than their quasi-rigid counterpart 
(Ca → 0). Furthermore, we observe that increasing oscillations in the particle trajectory can be observed due to tumbling and 
trembling dynamics, especially for more elongated particles in combination with higher particle softness, see 11(c).

Fig.  12 presents the direction cosine of the material line 𝑙𝑎. Note that for rigid particles, this material line always coincides with 
the semi-major axis of the particle, which is not the case for soft particles. However, for elongated particles, the deviation between 
the position of 𝑙𝑎 and the semi-major axis is small. As highlighted, we observe that an increasing softness of the particles leads to a 
longer orbit time of 𝑙𝑎 and an increased alignment time with the streamwise direction. This indicates (since the position of 𝑙𝑎 and 
the semi-major axis are comparable) a prolonged alignment time of the particle semi-major axis of the particle with the streamwise 
direction. As a result, we observe a reduced settling velocity, which in turn leads to an increased distance traveled in the streamwise 
direction before deposition.
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Fig. 13. Sketch of computational domain and particle injection position and the flow field (Re = 470) inside the lid-driven cavity in the 𝑥2∕𝐿 = 0.4 plane. The 
computational grid of 𝐿 = 0.1m for the fluid domain is discretized with a grid resolution of 60 × 60 × 60. The particle is released close to the top wall with 
an initial position of [0.467𝐿, 0.4𝐿, 0.983𝐿].

6.3. Soft particles in lid-driven cavity flow

Next, we study particles suspended in a lid-driven cavity flow, which is a common benchmark, [38]. The lid-driven cavity flow has 
been widely studied (experimentally: [39,40], analytically: [41], and numerically: [38,42]). Cui et al. [38], numerically replicated 
the experimental results of Tsorng et al. [39], who studied the motion of rigid spheres (𝑑𝑝 = 3 mm and 𝜌p = 1210 kg∕m) suspended 
in a viscous 3D flow in a closed cubic cavity. Cui et al. [38], extended the study by numerically investigating the orientational and 
barycentric dynamics of suspended rigid prolate ellipsoidal particles in the cavity flow using an identical setup as Tsorng et al. [39].

6.3.1. Quasi-rigid body limit
In the following, we employ an identical setup as in the numerical study by Cui et al. [38], who studied rigid ellipsoids in a 

lid-driven cavity flow. This allows us to validate our novel model in the rigid body limit (Ca → 0). The dimensions and boundary 
conditions for the lid-driven cavity are consistent with the study by Cui et al. [38], and are replicated in Fig.  13 for convenience. 
Observe that the initial particle position and orientation of the injected particle are visualized. The lid of the cavity moves at a 
constant velocity 𝑈 = 0.0813 m∕s and is filled with a fluid (water–glycol mixture) with kinematic viscosity 𝜈f = 17.3mm2∕s, resulting 
in a Reynolds number of Re = 470.

Note that at all walls we set the no-slip boundary condition. In agreement with Cui et al. [38], we consider both the drag force 
𝒇D and the reduced gravitational force 𝒇G. In the following, we assume that suspended particles colliding with the upper wall leave 
the domain, while for all other walls, it is assumed that the particles stick.

In agreement with Cui et al. [38], we suspend two quasi-rigid prolate ellipsoids (𝜆2 = 1) of volume equivalent diameter 𝑑eq = 3 mm
with an aspect ratio of either 𝜆1 = 2.0 or 𝜆1 = 5.0 in the lid-driven cavity flow.

The density ratio of fluid to particle is set to 𝜌∗ = [𝜌f − 𝜌p]∕𝜌f = +0.05%. The maximum tracking time is selected as 𝑡max = 5 s
(≈ 172.4 𝜏p). Fig.  14 presents the trajectory of a pseudo-rigid body in the rigid body limit together with the results of Cui et al. [38], 
who studied rigid prolate ellipsoids. As shown in Fig.  14, we achieve an excellent agreement of the particle trajectory with the 
pseudo-rigid body approach with Ca → 0 compared to the reference results. This test case clearly demonstrates the applicability of 
the novel pseudo-rigid body approach with initially ellipsoidal shapes to replicate ellipsoidal particle motions in flows in the rigid 
body limit.

The worst-case particle Reynolds number for the above case can be estimated using 𝑑eq = 3 mm and the fluid velocity at the initial 
particle location 𝑢0 = 0.367 m∕s. Consequently, the worst-case particle Reynolds number results as Re𝑝 = 𝑑eq𝑢∕𝜈f ≈ 64. Recall that, 
this estimate is obtained with the assumption of an initially zero particle velocity and a constant fluid velocity of 𝑢0. However, this 
worst-case does not occur in the scope of this simulation, as the particle velocity is initialized with the local flow velocity and thus 
the relative velocity magnitude throughout the simulation is 𝑢rel ≪ 𝑢. Note that the average relative velocity observed throughout 
the simulation in the case of 𝜆 = 5 is 𝑢rel ≈ 3.3 × 10−4 m∕s and, consequently, Re𝑝 ≈ 0.057 ≪ 1.

6.3.2. Pseudo-rigid body cases
Next, we employ soft initially prolate ellipsoidal particles, i.e. Ca > 0, to analyze the influence of the particle softness on the 

particle trajectory. In this context, we investigate the influence of particle softness on initially prolate particles with equivalent 
diameter 𝑑eq = 3 mm and particle density 𝜌p = 1209 kg∕m. The particle injection position is kept at [0.467𝐿, 0.4𝐿, 0.983𝐿] and the 
initial particle aspect ratio is set to either 𝜆1 = 1 (sphere), 𝜆1 = 2, 𝜆1 = 5 or 𝜆1 = 8.

For initially spherical particles, see Fig.  15(a), we observe strong deviations between rigid particles and soft particles. While the 
rigid particle gets trapped in the lower right corner of the cavity, the soft particles continue to travel through the entire cavity. 
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Fig. 14. Trajectory of (initially) prolate ellipsoidal particles in the 𝑥2∕𝐿 = 0.4 plane with 𝜌∗ = +0.05%. Present model for pseudo rigid bodies with Ca → 0
(quasi-rigid): 𝜆 = 5, 𝜆 = 2. Reference results by Cui et al. [38] for rigid ellipsoids (𝜌∗ = +0.05%):  𝜆 = 5,  𝜆 = 2. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Trajectory of soft initially prolate (𝜆2 = 1) ellipsoidal particles (𝜆1 = 1 (a), 𝜆1 = 2 (b), 𝜆1 = 5 (d), 𝜆1 = 8 (c)) of diameter 𝑑eq = 3 mm and density 
𝜌p = 1209.395 kg∕m3. The particle is released in the 𝑥2∕𝐿 = 0.4 plane at initial position [0.467𝐿, 0.4𝐿, 0.983𝐿]. The maximum tracking time is set to 100 s. The 
Capillary number of the respective particles is computed depending on the shear rate at the injection position of the particle. Present model with Ca:  0.001, 
 0.25,  0.5,  0.75. The final position of the corresponding particle (position at 𝑡 = 100 s) is highlighted with a symbol in the corresponding color. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Trajectory of soft initially oblate ellipsoidal particles (𝜆1 = 𝜆2 = 2) of diameter 𝑑eq = 3 mm and density 𝜌p = 1209.395 kg∕m3. The particle is released in 
the 𝑥2∕𝐿 = 0.4 plane at initial position [0.467𝐿, 0.4𝐿, 0.983𝐿]. The maximum tracking time is set to 100 s. The Capillary number of the respective particles is 
computed depending on the shear rate at the injection position of the particle. Present model with Ca:  0.001,  0.25,  0.5,  0.75. The final position of the 
corresponding particle (position at 𝑡 = 100 s) is highlighted with a symbol in the corresponding color chosen for the specific particle softness. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

It can also be observed that the deviations from the rigid particle reference increase with increasing softness of the particle. As 
shown in Fig.  15(b), the deviations between rigid and soft particles are increased for initially elongated prolate ellipsoids compared 
to initially spherical particles. This leads to significant deviations in the final particle position for all considered soft particles. For 
an even larger initial aspect ratio, i.e. 𝜆1 = 5, see Fig.  15(c), and 𝜆1 = 8, see Fig.  15(d), the deviations between the final positions 
become even more pronounced with increasing Ca. Furthermore, it can be observed that only particles with an initial aspect ratio 
𝜆1 = 5 and a particle softness Ca = 0.75 leave the cavity via the upper wall. For particles with an initial aspect ratio 𝜆1 = 8 already 
slightly soft particle leave the cavity, i.e. Ca ≥ 0.25, while the particle with Ca ≥ 0.75 sticks to the right wall. We attribute the 
variation in particle trajectories for different Ca to the competition between elastic restoring forces and hydrodynamic forces. As 
this is a time-dependent phenomenon, even small differences in the resultant forces (both in magnitude and direction) between rigid 
and soft particles accumulate over time, ultimately leading to significantly diverging particle trajectories.

In the next step, we conduct a similar analysis, but with initially oblate ellipsoids (𝜆1 = 𝜆2), see Fig.  16. We observe that 
the deviation of particle trajectories for initially oblate ellipsoidal particles is also more pronounced than for initially spherical 
particles, see Fig.  15. Furthermore, we find that similar to prolate ellipsoidal particles, increasing the particle aspect ratio also leads 
to an increased influence of particle softness on the particle trajectory for oblate ellipsoidal particles. As shown for the aspect ratio 
𝜆1 = 𝜆2 = 5, we observe that the particles leave the cavity at the upper wall when their particle softness is Ca ≥ 0.75, while for 
particles with an initial aspect ratio of 𝜆1 = 𝜆2 = 8 the particles already leave the cavity for Ca ≥ 0.5. Taken together, these test 
cases show the importance of the presented novel approach to predict the trajectory of soft particles whose transport is significantly 
different from that of their rigid counterparts.

6.4. Bifurcation

Next, we inject soft particles into a simplified 3D bifurcating airway. The setup of the bifurcation study corresponds to the setup 
used in our previous work, see [19] and Feng and Kleinstreuer, [43]. Here, the particles are suspended in a simple bifurcation 
geometry corresponding to a third generation of Weibel’s symmetric lung model, [44], with Reynolds number Re = 500, which 
mimics normal respiratory flow conditions in the third generation, [45]. As displayed in Fig.  17, the geometry used consists of one 
main and two secondary channels with a diameter 𝐷 = 6 mm and a bifurcation angle of 𝛼 = 60◦.

We inject a statistically significant number of soft micro-particles, i.e. 105, to investigate the influence of particle deformation 
on the deposition efficiency for different Stokes numbers Stk.

First, we suspend soft, initially spherical particles at the parent inlet, randomly distributed over a circular area with diameter 
𝐷inj = 5.5mm. We assume that the particles are deposited as soon as wall contact is established (impaction and interception). In 
agreement with Feng and Kleinstreuer, [43], we assume that particles that are not deposited within the maximum tracking time, 
i.e. ten times the average residence time of the flow (see Zhang et al. [45]), leave the geometry and are not counted as deposited. 
Note that we employ a constant inlet velocity profile for 𝒖.

The deformable particle tracking is validated using the numerical results of Zhang et al. [45], Feng and Kleinstreuer, [43], and our 
previous work on inhomogeneous particles (in the homogeneous particle limit) [33] in the quasi-rigid body limit (Ca → 0). Fig.  18 
showcases an excellent agreement of the deposition efficiency DE with the numerical reference results [43,45] for all investigated 
particle Stokes numbers. Consequently, we consider the novel approach for soft, initially ellipsoidal particles as validated. The 
highest Stokes number considered in this study, i.e. Stk = 0.5, corresponds to a particle volume-equivalent diameter of 𝑑 = 18.03 μm. 
eq
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Fig. 17. Sketch of the employed simplified bifurcation model according to the third generation of Weibel’s symmetric lung model, [44]. The parent and two 
daughter airways are of diameter 𝐷 = 6mm, and the bifurcation angle is 𝛼 = 60◦. The gravitational direction coincides with the streamwise direction 𝒆1.

Fig. 18. Deposition efficiency DE [−] in a simplified bifurcation for soft prolate ellipsoids with 𝜆 = 20 in the quasi-rigid body limit (Ca → 0). The deposition 
efficiency is denoted as DE and defines the ratio of deposited particles to injected particles. Employed reference data: Zhang et al. [45], Feng and Kleinstreuer, [43], 
Wedel et al. [33].

Additionally, the maximum velocity magnitude within the bifurcation region is 𝑈max = 1.9 m∕s. Based on this information, the worst-
case particle Reynolds number is estimated as Re𝑝 ≈ 2. Note that this estimate assumes an initial particle velocity of zero and a 
constant fluid velocity of 𝑈max. However, in the simulations, particles are injected with the local fluid velocity, meaning that the 
worst-case Re𝑝 never occurs, and in practice, Re𝑝 ≪ 2.

Next, we inject 105 particles of different initial shape, i.e. spheres (𝜆01 = 𝜆02 = 1) as well as two prolate ellipsoids (𝜆02 = 1) with 
either 𝜆01 = 2 or 𝜆01 = 5. Note that in the employed test case, the velocity gradient and thus the particle stretch is high mostly close 
to the particle walls, thus the majority of particles injected deform notably only when already reaching the near-wall region.

For initially spherical particles, see Fig.  19(a), the deviations in the deposition efficiency DE due to the particle softness are 
negligible. However, the deviations in DE increase towards more elongated particles, see 19(b,c). Overall, we observe a negligible 
to small reduction for all investigated initial particle shapes across all investigated Stk.

Next, we choose two Stokes numbers (Stk = 0.1 and Stk = 0.4) to visualize the spatial distribution of particles deposited in the 
simple bifurcation. The chosen Stokes numbers coincide with a volume equivalent diameter of 𝑑eq = 8.06 μm and 𝑑eq = 16.12 μm, 
respectively. In this context, Fig.  20(a,b) visualizes the local particle deposition in the simple bifurcation for initially spherical 
particles as well as for prolate particles (𝜆01 = 5) for Stk = 0.1 both for quasi-rigid (Left) with 𝜇s = 100000 Pa and for soft particles 
(Right) with 𝜇s = 0.5 Pa.

As displayed in Fig.  20(a,b), we observe for initially ellipsoidal particles a similar spatial deposition for Stk = 0.1 for both 
quasi-rigid (a) and soft (b) particles in the simple bifurcation. The shear modulus for the soft particle is chosen as either 𝜇s = 1Pa
or 𝜇s = 0.5 Pa to mimic a soft hydrogel. Furthermore, we find that for soft particles, the maximum aspect ratio in the bifurcation 
region is 𝑟1 max = 7e−06m. The maximum deformation occurs near the bifurcation radius 𝐴 (visualized in Fig.  17). For initially 
prolate ellipsoids with 𝜆01 = 5, we observe stronger elongations for particles with Stk = 0.1 in the region of the bifurcation radius 
than for the initially spherical counterpart, see Fig.  20(c,d). In addition, we also observe a compression of the particles outside the 
bifurcation radius, i.e. 𝜆 < 𝜆0 = 5.
1 1

17 



J. Wedel et al. Computer Methods in Applied Mechanics and Engineering 441 (2025) 117973 
Fig. 19. Particle deposition histogram in a simple bifurcation in the streamwise direction for initial (a) spheres (𝜆01 = 𝜆02 = 1) and (b) prolate ellipsoids with 
𝜆01 = 2 and 𝜆02 = 1 and (c) prolate ellipsoids with 𝜆01 = 5, 𝜆02 = 1. The particle Stokes number is set to Stk = 0.1.

Fig. 20. Particle deposition in a simple bifurcation for initial (a,b) spheres (𝜆01 = 𝜆02 = 1) and (c,d) prolate ellipsoids (𝜆01 = 5, 𝜆02 = 1) for quasi-rigid (Left) and 
soft particles (Right). The particle Stokes number is set to Stk = 0.1. Note that the particle size is scaled for visualization purposes. The scaling factor is set to 
20. The particles are colored depending on their semi-major axis 𝑟1.

To enable a more detailed analysis of the spatial particle deposition, we use histograms, see Fig.  21(a,b).
As highlighted in Fig.  21(a), we observe that the detailed deposition of particles along the streamwise direction changes only 

slightly in the case of initially spherical particles when considering quasi-rigid vs. soft particles. As shown, the deviations between 
the mean streamwise direction of quasi-rigid and soft particles are negligible. However, for initially prolate particles, see Fig.  21(b), 
we observe an increase in the deviation in spatial particle deposition when we consider quasi-rigid versus soft particles. Directly 
at the bifurcation radius A, we observe an increase in deposition for soft particles. Nevertheless, the general trend of the mean 
streamwise deposition of soft particles for Stk = 0.1 is slightly shifted downstream compared to the quasi-rigid counterpart.
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Fig. 21. Particle deposition histogram in a simple bifurcation in the streamwise direction for initial (a) spheres (𝜆01 = 𝜆02 = 1) and (b) prolates (𝜆01 = 5, 𝜆02 = 1). 
The particle Stokes number is set to Stk = 0.1. The total bifurcation length is 𝐿 = 0.04m with the bifurcation radius located at 𝑥1∕𝐿 ≈ 0.77. Present model results 
for:  quasi-rigid particles,  soft particles (𝐺 = 0.5 Pa). Present results for:  quasi-rigid particles,  soft particles (𝐺 = 1Pa),  soft particles (𝐺 = 0.5 Pa). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Next, we visualize the local deposition of particles with Stk = 0.4 in the simple bifurcation, see Fig.  22(a–d). Here we compare 
particles with Stk = 0.4 of either initially spherical (a,b) or prolate (c,d) shape (𝜆01 = 5) for both quasi-rigid (a,c) and soft particles 
(b,d) with 𝜇s = 0.5 Pa.

We find that the deposition pattern in the daughter airways is altered for rigid versus soft, initially spherical particles. We also 
find that the highest particle stretch for soft particles occurs after the bifurcation radius. For initially prolate particles (𝜆01 = 5), we 
find that the maximum stretch for soft particles does not occur directly at the bifurcation radius A, but is rather distributed over 
the daughter airways. At the position of the bifurcation radius, we observe a compression of the particles with (𝜆1 < 𝜆01 = 5).

A detailed analysis of the spatial particle deposition of these particles with Stk = 0.4 is shown in Fig.  23(a,b). As can be seen in 
Fig.  23(a) for initially spherical particles, the deviation of the mean streamwise deposition location is negligible for both quasi-rigid 
and soft particles. However, for initially prolate particles, we observe that the deposition at the bifurcation radius A is increased for 
soft particles compared to quasi-rigid particles, which shifts the mean streamwise deposition of the soft particles further upstream 
compared to the quasi-rigid particles.

Note that the human lung consists of numerous branches. Therefore, we conjecture that the accumulation of small differences 
may lead to more significant variations in the overall particle trajectory, thereby enhancing the effect of particle softness on 
particle deposition (to be studied separately). Furthermore, this model allows for the study of particle stretch along their trajectory. 
Consequently, we are able to determine where a drug carrier particle breaks locally, i.e. releases the drug when it exhibits a critical 
stretch. Since we have demonstrated that our novel model is able to efficiently track a large number (105) of soft, initially ellipsoidal 
particles in flows, we intend to address these aspects in future work.

7. Conclusion

This work extends our recent point-particle model for soft, initially spherical particles to initially ellipsoidal particles. The model 
is based on Lagrangian particle tracking in combination with the point-particle approach, which allows us to simulate soft micro-
particles in arbitrary flow fields. For this approach to remain valid, certain assumptions must be satisfied. These include Re𝑝 ≪ 1
(ensuring Stokes flow around the particle) and a dilute suspension of micro-particles (justifying the assumption of one-way coupling).

The main objective of this study is to validate and further compare the translational (barycenter) and rotation (shape) dynamics 
of soft, initially ellipsoidal particles with those of quasi-rigid particles. A significant achievement is the new model extension and 
its implementation for tracking initially non-spherical particles in arbitrary flow fields at the macro-scale. Comparisons with results 
from the literature validate our approach and demonstrate its ability to reproduce various findings at significantly less computational 
effort since no discretization of the particles is required.

To ensure the accuracy and reliability of the present model in tracking soft, initially ellipsoidal particles, we rely on both 
numerical and experimental studies. These include common benchmark cases such as lid-driven cavity flow, pipe flow, and a 
simplified bifurcation.

First, we validated the tracking code for initially ellipsoidal particles by comparing our results with the study on initially 
ellipsoidal particles in shear flow by Sanagavarapu et al. [21], who employed a finite element method. Our model showed excellent 
agreement for oblate, prolate and triaxial particles, by successfully reproducing the phase change diagram between tumbling and 
trembling as well as the shape dynamics at greatly reduced cost.

Next, we applied the model to prolate, soft ellipsoids in laminar pipe flow and compared our results with results for prolate, 
rigid ellipsoids by Tian, [37] and Cui et al. [38]. Here, our approach showed excellent agreement in the limit of a quasi-rigid body. 
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Fig. 22. Particle deposition in a simple bifurcation for initial (a) spheres (𝜆1 = 𝜆2 = 1) and (b) prolates (𝜆1 = 5, 𝜆2 = 1) for quasi-rigid (Left) and soft particles 
(Right). The particle Stokes number is set to Stk = 0.4. Note that the particle size is scaled for visualization purposes. The scaling factor is set to 10×. The 
particles are colored depending on their semi-major axis 𝑟1.

Fig. 23. Particle deposition histogram in a simple bifurcation in the streamwise direction (𝒆1) for initial (a) spheres (𝜆01 = 𝜆02 = 1) and (b) prolates (𝜆01 = 5, 𝜆02 = 1). 
The particle Stokes number is set to Stk = 0.4. The total bifurcation length is 𝐿 = 0.04m with the bifurcation radius located at 𝑥1∕𝐿 ≈ 0.77. Present model results 
for:  quasi-rigid particles,  soft particles (𝜇s = 0.5 Pa). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

In addition, we observed that the softness of the particles significantly affects both the barycenter and shape dynamics, resulting in 
longer suspension and longer traveling distance in the streamwise direction for softer particles.
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Furthermore, we studied soft particles suspended in lid-driven cavity flow. Here, we found that the deformability of the particles 
significantly changes the particle trajectories, especially for particles with higher initial particle aspect ratios.

Finally, we simulated the behavior of a statistically significant number (105) of soft particles in a simple bifurcation. Here, we 
observed only negligible deviations between quasi-rigid and softly deformable particles for initially spherical particles across all 
Stokes numbers investigated. For prolate ellipsoidal particles, however, deformability generally reduced deposition efficiency across 
all Stokes numbers. We conjecture that in realistic replicas of the human lung (which consists of multiple bifurcations), the deviations 
between soft and quasi-rigid particles is amplified. Overall, this example highlights the ability of our model to efficiently track a 
large number of soft particles suspended in flow.

In contrast to existing methods in the literature, which rely on costly discretizations and restrictive assumptions (e.g. incom-
pressible and hyperelastic particles or specific flow conditions), our point-particle approach uses affine deformations and minimal 
degrees of freedom, making it highly efficient. Moreover, the model is applicable to arbitrary macroscopic flow fields and is not 
limited by specific material properties of the particles.

To summarize, our results show that particle deformability can significantly alter particle trajectories, providing a new parameter 
to control particle transport and deposition. Our model offers this at minimal computational cost and great versatility.
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Appendix. Notation

In this work, we express tensors of various orders using bold italic font. First-order tensors (vectors) are denoted by bold italic 
lowercase letters such as 𝒂, while second-order tensors are denoted by bold italic uppercase letters such as 𝑨. Using Einstein’s 
summation convention, we can write the coordinate representation in Cartesian coordinate systems with base vectors 𝒆′𝑖 , 𝒆𝑖 (𝑖 = 1, 2, 3) 
as follows:

𝒂 = 𝑎′𝑖 𝒆
′
𝑖 = 𝑎𝑖 𝒆𝑖 and 𝑨 = 𝐴′

𝑖𝑗 𝒆
′
𝑖 ⊗ 𝒆′𝑗 = 𝐴𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 ,

where 𝑎′𝑖 , 𝑎𝑖 and 𝐴′
𝑖𝑗 , 𝐴𝑖𝑗 are the corresponding coefficients in the coordinate system 𝒆′𝑖 , 𝒆𝑖, respectively. The tensor coefficients 𝑎′𝑖 , 

𝑎𝑖 and 𝐴′
𝑖𝑗 , 𝐴𝑖𝑗 can be arranged in coefficient matrices, which we denote by underlined italic letters:

𝑎′ =
⎡

⎢

⎢

⎣

𝑎′1
𝑎′2
𝑎′3

⎤

⎥

⎥

⎦

, 𝑎 =
⎡

⎢

⎢

⎣

𝑎1
𝑎2
𝑎3

⎤

⎥

⎥

⎦

and 𝐴′ =
⎡

⎢

⎢

⎣

𝐴′
11 𝐴′

12 𝐴′
13

𝐴′
21 𝐴′

22 𝐴′
23

𝐴′
31 𝐴′

32 𝐴′
33

⎤

⎥

⎥

⎦

, 𝐴 =
⎡

⎢

⎢

⎣

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

⎤

⎥

⎥

⎦

.

Note that the employed notation is based on our previous work, [19]. The rotation matrix 𝑄 transforming coefficients with respect 
to the base vectors 𝒆𝑖 to coefficients with respect to the base vectors 𝒆′𝑖 follows as 

𝑄 =
⎡

⎢

⎢

⎣

𝑄11 𝑄12 𝑄13
𝑄21 𝑄22 𝑄23
𝑄31 𝑄32 𝑄33

⎤

⎥

⎥

⎦

with 𝑄𝑖𝑗 = 𝒆′𝑖 ⋅ 𝒆𝑗 and 𝒆′𝑖 = 𝑄𝑖𝑗 𝒆𝑗 . (A.1)

The corresponding rotation tensor 𝑸 = 𝒆′𝑗⊗𝒆𝑗 mapping 𝒆𝑗 into 𝒆′𝑗 = 𝑸⋅𝒆𝑗 has therefore coordinate representation 𝑸 = [𝒆′𝑗 ⋅𝒆𝑖] 𝒆𝑖⊗𝒆𝑗 =
𝑄𝑗𝑖 𝒆𝑖 ⊗ 𝒆𝑗 , i.e. the coefficient matrix of 𝑸 is the matrix transpose 𝑄𝑇 . Taken together, coefficient matrices of vectors and second 
order tensors transform as 

𝑎′ = 𝑄𝑎 and 𝐴′ = 𝑄𝐴𝑄𝑇 . (A.2)
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Data will be made available on request.
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