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A B S T R A C T

The problem of unsteady coupled moisture, air and heat energy transport through a porous solid is studied
numerically using singular boundary integral representation of the governing equations. The governing
transport equations are written and solved for the continuous driving potentials, i.e. relative humidity,
temperature and air pressure. The boundary and interface conditions are discussed.

The integral equations are discretized using mixed-boundary elements and a multidomain method also
known as the macro-elements technique. The numerical model uses quadratic approximation over space and
linear approximation over time for all field functions, which provides highly accurate numerical results. Three
test benchmark examples (moisture uptake in a semi-infinite region, air transfer through a lightweight wall, and
moisture redistribution inside a multilayered wall with capillary-active interior insulation), were analyzed to
show the applicability and accuracy of the simulation model developed.

1. Introduction

Building envelopes are exposed simultaneously to indoor and
outdoor climate changes. Differences in temperature, moisture and
air pressure have a major impact on the sustainability of building
components. It is highly important to develop reliable numerical
simulation tools that can handle the coupled heat, air and moisture
(HAM) phenomena and accurately capture the hygrothermal behavior
of building components and their influence on the indoor environment.
Many HAM numerical simulation models have been developed in
recent years, based on a variety of discretization techniques for
numerical approximation [15]. However, all these models require a
reliable set of heat, air and moisture transport properties of porous
materials [11].

This paper extends the work reported in an earlier paper [14],
where only the coupling between the moisture and heat transport
equations was performed. Only Dirichlet and Neumann boundary
conditions were simulated then. In this paper, however, the coupling
includes the airflow dynamic equation, and the transport moisture
content discontinuous equation is replaced by the relative humidity
continuous equation. In the new formulation, vapor mass and heat
energy convection fluxes were simulated, and boundary conditions of
the third or Cauchy type are also implemented.

In this paper, the three coupled transient HAM transport equations

are solved using a boundary element numerical model (BEM). BEM is
especially efficient at handling linear transport problems, where only
the boundary of the solution domain has to be discretized. The scale of
the problem is thus substantially reduced. Since the BEM numerical
model is based on an inverse formulation, the field functions and their
fluxes are computed with equal accuracy [9]. However, the domain
discretization is required to capture nonlinear material effects. The
singular integral representation is based on the use of an appropriate
fundamental solution that incorporates some of the physics of the
transport phenomenon, such as accumulation and diffusion of the field
function. Accurate descriptions of the different time and length scales
can be accommodated and treated much more reliably in a physically
and mathematically justified manner. A serious drawback of the BEM is
that it leads to a fully populated system of equations. However, this can
be efficiently overcome by the subdomain or macro-element approach,
which yields a sparse system similar to the domain type numerical
models [7] while maintaining the accuracy and stability of the
numerical algorithm. The discretization used in this paper leads to
an overdetermined system of equations [12,13].

We next briefly set out the problem. The relevant governing
differential equations for energy, moisture and air transport are
considered and formulated for the continuous driving potentials, i.e.
relative humidity, temperature and air pressure.

The mathematical description of the transport problems ends with
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a discussion of the corresponding boundary and interface conditions.
The related singular integral representations are then developed that
describe the nonlinear heat, moisture and air transport in an integral
form. The nonlinearity of the coupled diffusion–convection problem is
handled by using an iterative solution strategy, based on an under-
relaxation procedure. We give three benchmark test examples involving
moisture uptake in a semi-infinite region, air transfer through a
lightweight wall, and moisture redistribution inside a multilayered
wall with capillary-active interior insulation to show the efficiency and
accuracy of the proposed solution strategy [2,3].

2. Governing equations for a two-phase system

Let us consider a two-component, two-phase thermodynamic
system in a solution domain Ω bounded by a control surface Γ, where
the indices w, a and m represent the water, air and dry porous
material, and the indices l and v represent the two water phases. That
is, l refers to the liquid water and v to the vapor water in a liquid/vapor
moisture system.

2.1. Moisture transport equation

The water moisture mass balance equation describing accumulation
within the control volume, the moisture mass flux, e.g. diffusion/
conduction and convection in and out of the control volume, and the
generation of a species via phase change written for the water vapor
and liquid water [1,2] is
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where the total vapor mass flux n→v combines the diffusion j
→

v and the

convection j
→

v conv, driven parts, e.g. n j j→ =
→

+
→

v v v conv, , and the liquid mass

flow considers only the conduction part j
→

l . The dimensionless field
functions Y m m= /v v m and Y m m= /l l m represent the mass fractions or
moisture ratios of water vapor and liquid water, respectively, and mm

represents the mass of the dry porous material, whilst the quantities
ρm, and ṁC denote the mass density of the solid porous matrix and the
moisture mass condensation/evaporation rate, respectively. The gov-
erning conservation equation for the moisture flow through a porous
solid can now be derived by adding the individual species conservation
equations (1), yielding
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where the derived potential field function W ρ Y ρ Y m V= + = /m v m l w m

represents moisture content m m m= +w v l per volume of dry material
Vm.

Using constitutive models to express the vapor diffusion mass flux

j
→

v , vapor convection mass flux j
→

v conv, , and liquid conduction mass flux j
→

l
due to the capillary suction and gravity effect, respectively, we can write
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+ →,v p v v conv m v l l l l l, (3)

where the driving potentials pv and pl are the vapor pressure and the
pore liquid pressure, respectively, and the vector quantities v→ and g→

are the air velocity and the gravity acceleration. The transport
coefficients δ δ μ= /p o and D k ν= /l l l are the vapor and liquid perme-
ability of the porous material, respectively, and the quantities δo, μ, kl,
νl and ρl represent the vapor diffusion in still air, the diffusion
resistance factor, the liquid flow coefficient, the liquid water kinematic
viscosity and the liquid water mass density.

Substituting the mass flux equations (3) into the conservation
equation (2) gives the governing moisture transport equation due to
water vapor diffusion and convection, liquid water conduction and
gravity:
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The moisture transport equation (4) consists of various moisture
driving potentials, i.e. moisture content W, partial water vapor
pressure pv, the pore liquid pressure pl and vapor mass ratio Yv.
Consequently, all terms in Eq. (4) have to be mathematically trans-
formed using relative humidity φ and temperature T as primitive
driving potentials. Using the following relations for the mass fluxes
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(5)

where the quantities j ρ v
→

= →
a conv a, , ω and ps(T) are the air convection

mass flux, the absolute humidity and the saturation pressure, respec-

Nomenclature

cpm specific heat capacity of dry material, J/kg K
cpl specific heat capacity of liquid water, J/kg K
cpv specific heat capacity of water vapor, J/kg K
cpa specific heat capacity of air J/kg K
ρm solid matrix density, kg/m3

ρl liquid water density, 1000 kg/m3

ρv density of water vapor, kg/m3

λ thermal conductivity, W/m K
δo vapor permeability of still air, s
δ δ μ= /p o vapor permeability of material, s
μ diffusion resistance factor, –
Dl liquid permeability of material, s
δa air permeability of material, s
kl liquid flow coefficient, m2

kl air flow coefficient, m2

νl liquid water kinematic viscosity, m /s2

νa kinematic viscosity of air, m /s2

Dva vapor diffusivity in air, 26.1·10 m /s−6 2

Dφ moisture transport coefficient, kg/m s

D D θ= /m φ moisture diffusivity, m /s2

DT moisture transport coefficient, kg/m s K
ps saturation pressure, Pa
pl pore liquid water pressure, Pa
pv water vapor pressure, Pa
T temperature K, °C
W moisture content, kg/m3

φ p p= /v s relative humidity, –
θ dW dφ= / sorption capacity, kg/m3

Yv mass fraction of water vapor, –
Yl mass fraction of liquid water, –
j moisture mass flux, kg/m s2

jl liquid water mass flux, kg/m s2

jv water vapor mass flux, kg/m s2

ṁC moisture condensation rate, kg/m s3

Rw water vapor gas constant, 461.4 J/kg K
Ra air gas constant, J/kg K
Mw water molecular mass, kg/kmol
βp vapor transfer coefficient, s/m
α heat transfer coefficient, W/m K2
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tively, and Rw and ρa are the water vapor gas constant and the air
mass density, the following moisture transport equation can be
formulated:

⎛
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⎠⎟θ φ
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where θ dW dφ= / is the slope of the sorption isotherm W W φ= ( ). The
primitive variable in Eq. (6) is the relative humidity field function
φ r t( , )j , whilst the second, third and fourth terms on the right side of
the equation act as homogeneous nonlinear source terms due to
temperature gradient, vapor convection and gravity force. Note that,
due to the second and third terms, Eq. (6) is explicitly coupled to the
heat energy transport equation and pressure equation. The transport
coefficients Dφ and DT are given as:

D δ p D R ρ T
φ

D δ
dp
dT

φ D R ρ φ= + and = + ln( ).φ p s l w l T p
s

l w l (7)

2.2. Heat energy transport equation

The heat energy balance equation considers accumulation within
the control volume, energy flux (sensitive, latent and convective), in
and out of the control volume and heat source/sink term [1–3], as
follows:
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where the specific capacities per mass c c c W ρ= + /p eff pm pl m, , cpm and
cpl refer to the effective, dry porous material and to liquid water, I
denotes a heat source per unit volume, and the sensible heat energy
flux q→sens, the latent heat flux q→lat and the convective heat flux
q q q→ = → + →

conv a conv v conv, , , due to air and vapor convection, are
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where hlat denotes specific latent enthalpy, he is specific latent
enthalpy of evaporation or condensation and the quantities cpv, cpa
and λeff denote the specific heat per mass of water vapor, the specific
heat per mass of air and effective thermal conductivity, respectively.
Substituting heat flux equations (9) into conservation equation (8)
gives

c T
t

λ T h n ρ c ωc v T I∂
∂

= ∇
→

·[ ∇
→

− → − ( + )→ ] + ,eff eff lat v a pa pv (10)

where the primitive variable in Eq. (10) is the temperature field T r t( , )j ,
whilst the coefficient c ρ c=eff m p eff, is the effective specific heat per unit
volume.

2.3. Airflow dynamic equations

The primitive field functions of interest for the airflow through a
porous solid are the velocity vector field v r t( , )i j and the scalar pressure
field p r t( , )j , so that the mass and momentum equations are given by

x
ρ v∂

∂
( ) = 0,

j
a j

(11)

ρ v δ p
x

= − ∂
∂

,a j a
j (12)

where the quantities δ k ν= /a a a, ka and νa represent the air perme-
ability, the airflow coefficient and the air kinematic viscosity, respec-
tively.

The pressure equation is derived by applying the div operator to Eq.
(12), resulting in the elliptic Poisson pressure equation

⎛
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⎞
⎠⎟x

δ p
x

∂
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= 0,
j

a
j (13)

where the time dependence of the two field functions, velocity and
pressure, account for the effect of time-dependent pressure boundary
conditions.

2.4. Initial and boundary conditions

To close the mathematical model governing the heat, moisture and
air time dependent transport in a porous material we need to know the
initial and boundary conditions for the relative humidity φ, tempera-
ture T and air pressure p.

The initial conditions in general represent the distribution of field
functions in the solution domain and their normal derivatives on the
boundary and are given by the following relations:

φ φ T T p p Ω t t
φ
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n
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o
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As a rule, the heat and moisture exchange between a solid wall
surface and its surrounding medium can be prescribed by the boundary
conditions of the first, second and third kinds on the parts of the
boundary Γ1, Γ2 and Γ3, respectively, such that the solution boundary
Γ Γ Γ Γ= + +1 2 3.

The boundary conditions of the first or Dirichlet kind, where
surface conditions are the same as the ambient conditions, are given
by the known surface value of the driving potentials:

T T φ φ Γ t t= and = on for > ,o1 (15)

and this condition can be applied when the building component is in
contact with water or earth. In the case of liquid transport, this applies
when the component surface is completely wetted by rain or ground
water.

Boundary conditions of the second or Neumann type require
knowledge of heat or mass flow at the surface and are given by the
prescribed surface temperature and relative humidity normal deriva-
tive values, respectively:

T
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p s
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Symmetry conditions and adiabatic or moisture-tight conditions are
given by the zero flux condition, i.e. T n φ n∂ /∂ = ∂ /∂ = 0.

Boundary conditions of the third or Cauchy type are the most
common kind of heat and moisture transfer between the component
surface and the ambient. Special compatibility and restriction condi-
tions must be satisfied at the boundary surfaces of the heat and
moisture transfer region. There must be an energy and moisture
balance between the heat/moisture flow within the solid to/from the
surface, and the heat/moisture that is leaving/entering the surface.

Let us first consider vapor transfer. The normal total vapor flux

n n n j j n= → ·→ = (
→

+
→

)·→v v v v conv, flowing within the solid from the surface
must be equal to the vapor transfer from the ambient, denoted by the
index a, to the solid surface given by the constitutive model as follows:

n δ
p
n

j β p p j Γ t t− =
∂
∂

− = ( − ) − on for > ,v p
v

v conv p v a v v conv a o, , , , 3 (17)

where the quantities βp and pv a, are the vapor transfer coefficient and
ambient vapor pressure, respectively. Eq. (17) can be transformed
using relative humidity and the temperature as driving potentials as
follows:

n δ p φ
n

δ
dp
dT

T
n

φ j β p φp j− = ∂
∂

+ ∂
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− = ( − ) − ,v p s p
s

v conv p v a s v conv a, , , , (18)
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yielding an expression for the relative humidity normal derivative
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Based on Eq. (19) we can conclude that vapor convective fluxes
canceled each other out in all outflow surfaces, j j=v conv v conv a, , , .

Heat transfer can be treated in the same way. The normal total heat
flux q q n q q q n= →·→ = (→ + → + → )·→sens lat conv flowing within the solid from the
surface must be equal to the heat inflow from the ambient to the solid
surface given by the following constitutive model:

q α T T h n q q Γ t t− = ( − ) − − + on for > ,a lat a v conv a sol o, , 3 (20)

where the ambient temperature is denoted by Ta and the heat transfer
coefficient is given by summing the convective and radiation parts
α α α= +con rad . The term qsol represents heat flow from short-wave
solar radiation. Substituting Eqs. (9) for the sensible heat flow into Eq.
(20) gives

q λ T
n
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(21)

yielding an expression for the temperature normal derivative:
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Again, we can conclude, that the latent and convective fluxes canceled
each other out at all outflow boundaries.

The Dirichlet and Neumann boundary conditions for the pressure
equation can be determined for the solution boundary and the
following relations are valid:

p p Γ p
n

p
n

ρ
δ

v Γ= on and ∂
∂

= ∂
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= − on ,a

a
n1 2

(23)

where v v n= →·→n is the normal velocity component.

2.5. Interface conditions

When simulating conservation problems for an arbitrary field
function u r t(→, ), we encounter transport problems such as heat,
moisture and momentum transfer between two adjacent media/
macro-elements labeled 1 and 2. In the equilibrium state, the indivi-
dual driving potentials, i.e. temperature, relative humidity or air
pressure, denoted by u(1) and u(2), satisfy the governing transport
equation. At the interface, denoted by ΓI, the physical considerations
provide us with the necessary expressions for the compatibility and
equilibrium conditions.

The chosen driving potentials for heat and moisture transport in
porous media, the relative humidity φ, the vapor pressure pv and
temperature T are continuous field functions at the contact between the
two porous materials, therefore the compatibility conditions give us the
equalities:

T T T φ φ φ Γ≡ ≡ and ≡ ≡ on .I I
I

(1) (2) ( ) (1) (2) ( ) (24)

The energy and moisture equilibrium conditions at the interface ΓI
between Ω1 and Ω2 are given by continuous energy flow q q q→ = → + →

sens lat

and continuous moisture flow j j j
→

=
→

+
→

v l across the interface, respec-
tively. The energy equilibrium conditions across the interface can
therefore be stated as:
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or, in the extended form for the temperature normal derivative
T n(∂ /∂ )(2):
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and the moisture equilibrium conditions across the interface can
likewise be written as:

j j n j j n Γ(
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+
→
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or, in extended expression for the relative humidity normal derivative
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The air flow interface conditions can be given by the following
compatibility and equilibrium conditions:
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3. Boundary element numerical model

3.1. Integral representation for energy and moisture transport
equations

The mathematical model described above is solved with a boundary
element method approach. The boundary-domain integral equations
are integrated over an elementary subdomain/macro-element. The
unique property that gives the boundary element method an advantage
over other domain type numerical techniques is its use of Green's
fundamental solutions as particular weighting functions [8,9]. Since
the fundamental solutions only consider the linear transport phenom-
enon, the appropriate selection of a linear differential operator L [ · ] is
of crucial importance when establishing a stable and accurate singular
integral representation that corresponds to the original differential
conservation equation.

The differential energy and moisture conservation models written
for the primitive field function temperature and relative humidity,
respectively, can be written in the following general form [7]:
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where the notation L [ · ] stands for the parabolic diffusion linear
operator, u r t( , )j is an arbitrary field function, and the terms b r t( , )j j
and b r t( , )j represent inhomogeneous or source effects due to the
nonlinear transport coefficients, convection and production of the
conservative field function, respectively, with the following correspond-
ing integral representation [6] written for a time step t t tΔ = −F F−1:
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where q u n q n= ∂ /∂ = j j and u ξ s t t( , ; , )F
⋆ are the field function normal

flux and the parabolic diffusion fundamental solution [8], respectively,
where s is an arbitrary field point in the solution domain or on the
boundary, and ξ is the source point. The nonhomogeneous terms bj and
b are given by the following relations, i.e. for the energy transport:
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with c c c= + ∼
eff o , λ λ λ= + ∼

eff o and a λ c= /o o o, and for the moisture
transport:
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and θ θ θ= + ∼
o , D D D= +φ φ o φ, and a D D θ= = /o m o φ o o, , .

3.2. Integral representation for air dynamics

Employing the linear elliptic Laplace differential operator, the
following relation may be considered for the pressure equation (23):

L p
b
x

p
x x

b
x

[ ] +
∂
∂

= ∂
∂ ∂

+
∂
∂

= 0,j

j j j

j

j

2

(34)

with the corresponding boundary-domain integral representation:

∫ ∫ ∫ ∫c ξ p ξ pq dΓ p
n

u dΓ b n u dΓ b q dΩ( ) ( ) + = ∂
∂

+ − ,
Γ Γ Γ

j j
Ω

j j
⋆ ⋆ ⋆ ⋆

(35)

where u ξ s( , )⋆ is the elliptic Laplace fundamental solution [9], whilst
the inhomogeneous nonlinear term bj is given by the following
expression:

b δ
δ

p
x

= ∂
∂

,
͠

j
a

ao j (36)

and δ δ δ= + ͠a ao a. For the constant air permeability δa, the pseudo-
force term b ≡ 0j , and the pressure field is given by the linear Laplace
equation represented by the first two boundary integrals in Eq. (35).

3.3. Discretized equations

For the numerical solution of Eq. (31), the boundary Γ is discretized
into a series of boundary elements and the domain Ω is discretized into
a series of internal cells. Furthermore, field functions and their
derivatives are assumed to vary within each element or cell and each
time step, according to the space Φ{ } or ϕ{ } and time Ψ{ } interpolation
functions such that

u S t Φ Ψ u q S t Φ Ψ q

b S t Φ Ψ b b s t ϕ Ψ b

( , ) = { } { }{ } , ( , ) = { } { }{ } ,

( , ) = { } { }{ } , ( , ) = { } { }{ } , etc .,

T
m
n T

m
n

j
T

j m
n

j
T

j m
n (37)

where index n refers to the number of nodes within each element or
cell, and the index m refers to the degree of variation of the function
Ψ{ }. Assuming linear variation of all functions within the individual
time increment τ t t= −F F−1, i.e. m=1,2 and

Ψ t t
τ

Ψ t t
τ

= − and = − ,F F
1 2

−1
(38)

the analytical expressions for the time integrals

∫ ∫U a Ψ u dt Q a Ψ q dt= , = ,m o
t

t
m m o

t

t
m

⋆ ⋆ ⋆ ⋆

F

F

F

F

−1 −1 (39)

can be derived [14] and Eq. (31) can be rewritten as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫ ∫

∫ ∫

∫

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑

c ξ u ξ Φ Q dΓ u

Φ U dΓ q Φ U n dΓ
b
a

Φ Q dΩ
b
a

Φ U dΩ

b
a

Φ u dΩ u

( ) ( ) + { } { }

= { } { } + { } { }

− { } { } + { }

{ } + { } { } ,

m e

E

Γ
T

m m
n

m e

E

Γ
T

m m
n

m e

E

Γ
T

m j
j

o
m
n

m c

C

Ω
T

jm
j

o
m
n

m c

C

Ω
T

m

o
m
n

c

C

Ω
T

F F
n

2
=1

2

=1

⋆

=1

2

=1

⋆

=1

2

=1

⋆

=1

2

=1

⋆

=1

2

=1

⋆

=1
−1

⋆
−1

e

e e

c c

c (40)

where the symbols E and C denote the number of boundary elements
and internal cells, respectively. The above boundary and domain
integrals, which are functions of geometry, the time step and material
properties can be discretized as follows:

∫ ∫
∫ ∫
∫ ∫

h Φ Q dΓ g Φ U dΓ

c Φ U n dΓ d ϕ U dΩ

d ϕ Q dΩ b ϕ u dΩ

= { } , = { } ,

= { } , = { } ,

= { } , = { } ,

em
n

Γ
T

m em
n

Γ
T

m

ejm
n

Γ
T

m j cm
Ω

T
m

cjm
Ω

T
jm c

Ω
T

F

⋆ ⋆

⋆ ⋆

⋆
−1

⋆

e e

e c

c c (41)

yielding the following discretized form of Eq. (40):
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Using the collocation method to apply the above statement to all
boundary and domain nodes, and applying the notation, i.e.
H c ξ H[ ] = [ ( )] + [ ] and E C D[ ] = [ ] − [ ]j j j , we get a nonlinear system of
equations:
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Based on the procedure developed for the energy and moisture
transport equations, integral representation of the pressure Eq. (35)
can be given in the following discretized form:

⎧⎨⎩
⎫⎬⎭H p G p

n
E b[ ]{ } = [ ] ∂

∂
+ [ ]{ }.j j

(44)

4. Numerical algorithm

When dealing with nonlinear transport problems the subdomain
technique must be used to apply different constant diffusivity to each
subdomain. The second reason for applying the subdomain or multi-
domain model is to cut the storage and CPU time requirements of the
single domain BEM approach [5,7,14]. The heat energy, moisture and
pressure equations represent a coupled nonlinear system of equations
that can only be solved iteratively. The nonlinear iterative solution
algorithm is as follows:

• begin time step-loop

• begin global nonlinear loop
1. calculate integrals for the energy and moisture kinetics
2. air flow dynamics, pressure equation

1. solve discretized equation (44) for pressure
2. compute velocity field based on Eq. (12)

3. heat energy kinetics
1. begin local heat energy nonlinear loop

Fig. 1. A semi-infinite homogeneous structure: geometry, boundary and initial condi-
tions.
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1. solve discretized equation (43) for energy
2. use under-relaxation for computing new domain values
3. check convergence – local loop

2. end local heat energy loop
4. moisture kinetics

1. begin local moisture transport nonlinear loop
1. solve discretized equation (43) for moisture
2. use under-relaxation for computing new domain values
3. check convergence – local loop

2. end local moisture transport loop
5. nonlinear effects – calculate all nonlinear terms

1. use under-relaxation for computing new values
6. check convergence– global loop
7. end global nonlinear loop

• end time step loop

5. Numerical examples

Three one-dimensional benchmarks [3,15,16] were solved in 2D
plane geometry. The benchmarks presented cover coupled heat,
moisture and air transfer.

5.1. Moisture uptake within a semi-infinite region

The benchmark test example, shown in Fig. 1, was a single
homogeneous material marked with D( ) in Table 1 L m= 14.0x long
and L m= 0.1y wide, in equilibrium with a constant surrounding
environment [3]. The material was perfectly air tight. At a certain
moment the temperature and the relative humidity underwent a step-
change. A non-uniform non-symmetric mesh of M R= 400 × 1 80x
macro-elements was used, with aspect ratio Rx=80 between the largest
and the smallest boundary elements. The convergence criterion
selected was ϵ = 10−9, and the under-relaxation parameter was set to
ur=0.8. The time-dependent analysis was performed by running the
simulation from the initial state with a time step value of tΔ = 1.0 day

and tΔ = 0.1 day.
The objective was to calculate the moisture and temperature

distribution after t = 7, 30 and 365 days. The initial hygrothermal
conditions of the structure were temperature T = 20 °Co and relative
humidity φ = 0.50o . After the step change, the left surface of the
structure was exposed to φ = 0.95S relative humidity and temperature
T = 30 °CS , whilst on the right surface the normal derivatives of the
corresponding field functions were assumed to be zero. Therefore, the
following boundary conditions of the first kind could be prescribed on
the left boundary at x=0:

φ T x y L t= 0.95 and = 30 °C on = 0 and 0 ≤ ≤ for > 0,S S y (45)

and zero Neumann boundary conditions were prescribed elsewhere,

Table 1
Parameters for all given materials [11,15,16].

Parameter Brick (A) Mortar (B) Insulation (C) Material (D)

Water retention

W (kg/m )sat 3 373.5 700.0 871.0 146.0

k (–)1 0.46 0.2 0.41 1.0
k (–)2 0.54 0.8 0.59 –

a (1/m)1 0.47 0.5 0.006 0.7848·10−6

a (1/m)2 0.20 0.004 0.012 –

n (–)1 1.5 1.5 2.5 1.6
n (–)2 3.8 3.8 2.4 –

Vapor diffusion
μ (–) 7.5 50.0 5.6 200.0

p (–) 0.20 0.20 0.20 0.497

Liquid conduction
a (–)0 −36.484 −40.425 −46.245 −39.2619
a (–)1 +461.325 +83.319 +294.506 +0.0704
a (–)2 −5240.0 −175.961 −1439.0 −1.7420·10−4

a (–)3 +2.907·10+4 +123.863 +3249.0 −2.7952·10−6

a (–)4 −7.41·10+4 0 −3370.0 −1.1566·10−7

a (–)5 +6.997·10+4 0 +1305.0 +2.5969·10−9

Thermal conduction
λ (W/m K)m 0.682 0.6 0.06 1.5
λ (W/m K)mst 0 0.56 0.56 15.8

Heat capacity

ρ (kg/m )m
3 1600.0 230.0 212.0 2280.0

c (J/kg K)pm 1000.0 920.0 1000.0 800.0

Fig. 2. Moisture field – time step tΔ = 1.0 day: instantaneous results at the specific time
instants, t = 7, 30 and 365 days; ○, □, ▿– limits of validity for numerical results [3].

Fig. 3. Temperature field – time step tΔ = 1.0 day: instantaneous results at the specific
time instants, t = 7, 30 and 365 days; ○, □, ▿– limits of validity for numerical results

[3].

Fig. 4. Air flow through a lightweight wall: outline of the structure, initial and boundary
conditions: L = 0.2 mx , L = 0.002 my , t = 20 days1 , t = 21 days2 , t = 100 days3 , pΔ = 30 Pa.
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T
n

t∂
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= 0 and ∂
∂

= 0 for > 0.
(46)

The initial conditions were

φ T t= 0.5 and = 20 °C at = 0.o o (47)

The sorption isotherm was given by the following expression [3]:

W φ W k
a h

h
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ρ g

R T φ
g
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[1 + ( ) ]

, = = − ln( ) ,sat n m
suc

l

w1

1 1 1 (48)

with the exponent m n= 1 − 1/1 1. The vapor permeability δp and liquid
water permeability Dl transport coefficients were given by the following
expressions [3]:
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(50)

Effective thermal conductivity λeff and specific heat per volume for dry
material cm, respectively, were given by the following relationships [3]:

λ λ λ W
ρ

c c ρ= + and = .eff m mst
l

m pm m
(51)

All the relevant material parameters are given in Table 1 for the
material D( ).

Since there is practically no difference between simulation results
for the time increment tΔ = 1.0 day and the time increment tΔ = 0.1
day, only the moisture and temperature distributions for the time
increment tΔ = 1.0 day are plotted in Figs. 2 and 3. As these figures
show, the simulation model produced excellent results with a high
degree of agreement with the benchmark solution presented in [3].

5.2. Air flow through a light weight wall

The benchmark test example [15,16] shown in Fig. 4 deals with the
air transfer caused by a drop in air pressure pΔ = 30 Pa through a
single homogeneous material C( ) layer L = 0.2 mx thick and
L = 0.002 my in height. Moisture transfer is caused mainly by air flow,
but moisture and temperature gradients across the porous layer play a
part, too. The simulation time is 100 days. There is air exfiltration in
the first 20 days, which then changes to air infiltration. A non-uniform
symmetric mesh of M R= 24 × 1 2x macro-elements was applied, with
aspect ratio Rx=2 between the largest and the smallest boundary
element. The convergence criterion selected was ϵ = 10−10, and the
under-relaxation parameter was set to ur=0.001 to provide the
convergent solution. The time-dependent analysis was performed by
running the simulation from the initial state with a time step of

tΔ = 1.00 day and tΔ = 0.50 day.
The initial hygrothermal conditions of the structure were tempera-

ture T = 20 °Co , relative humidity φ = 0.95o and air pressure 1.0·10 Pa5 .
The following boundary conditions of the third kind could be pre-
scribed on the left boundary at x = 0 m and y L0 ≤ ≤ y,

T α t φ β

t

= 20.0 °C and = 10.00 W/m K for > 0 = 0.7 and

= 7.38·10 s/m for > 0,

a i i a i p i,
2

, ,

−12 (52)

on the right boundary at x L= x and y L0 ≤ ≤ y

T α t φ β

t

= 2.0 °C and = 10.00 W/m K for > 0 = 0.8 and

= 2.00·10 s/m for > 0,

a e e a e p e,
2

, ,

−7 (53)

and zero boundary conditions of the second kind were prescribed
elsewhere,

φ
n

T
n

t∂
∂

= 0 and ∂
∂

= 0 for > 0.
(54)

The initial conditions were

Fig. 5. Temperature and moisture distribution in time at x = 0.05 m , x = 0.1 m and
x = 0.15 m for M R= 24 × 1 2x mesh using timesteps of tΔ = 0.50 day and tΔ = 1.00 day.

Fig. 6. Temperature distribution in time at x = 0.05 m . Comparison with [15,16] is
shown.

Fig. 7. Temperature distribution in time at x = 0.1 m. Comparison with [15,16] is
shown.
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φ T p t= 0.95, = 20 °C and = 1.0·10 Pa at = 0.o o o
5 (55)

All the relevant transport and material properties are given in Table 1
for the material C( ). The sorption isotherm was given by the following
expression:
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i i (56)

with the exponent m n= 1 − 1/i i. The vapor permeability δp and liquid
water permeability Dl transport coefficients were given by the following
expressions
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Effective thermal conductivity and specific heat per volume for dry
material, respectively, were given by the following relationships:

λ λ λ W
ρ

c c ρ= + and = .eff m mst
l

m pm m
(59)

The air permeability δa and air properties c c ρ=a pa a were assumed to
be constant

δ c ρ c= 7.5·10 [s] and = 1000·1.25 = = 1.25·10 J/m K.a pa a a
−6 3 3 (60)

The temperature and moisture distribution in time were examined
to assess the numerical error related to the time step value. Fig. 5
presents time plots of temperature and moisture at three locations for
different time steps. There are minor differences in the results which
were observed at the beginning of the simulation. We conclude that the

Fig. 8. Temperature distribution in time at x = 0.15 m . Comparison with [15,16] is
shown.

Fig. 9. Moisture distribution in time at x = 0.05 m . Comparison with [15,16] is shown.

Fig. 10. Moisture distribution in time at x = 0.1 m. Comparison with [15,16] is shown.

Fig. 11. Moisture distribution in time at x = 0.15 m . Comparison with [15,16] is shown.

Fig. 12. Diffusivity distribution in time at x = 0.05 m , x = 0.10 m and x = 0.15 m .

Fig. 13. Capillary-active inside insulation: outline of the structure, initial and boundary
conditions: L = 0.420 mx , L = 0.001 my , δ = 0.365 mb , δ = 0.015 mm , δ = 0.040 mi , simula-

tion time 60 days.
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mesh and the short time step are adequate and present these results in
a further analysis. Time plots of temperature and moisture at three
locations and comparison with the benchmark results are shown in
Figs. 6–11. As these figures show, the BEM numerical simulation
results agree well with the benchmark results [15,16].

This test case is more challenging as it involves different physical
phenomena, such as redistribution of heat and moisture caused by
diffusion and convection, inherent severe nonlinearity of the transport
coefficients, and the system is exposed to realistic internal and external
boundary conditions. Fig. 12 presents the time plot of the moisture
diffusivity Dm at three locations. A marked variation of the moisture
diffusivity can clearly be seen for a few orders of magnitude. Because of
this aspect, the variation of the Peclet cell number value, i.e. defined as
Pe v L M D= · / /cell x m, lies in the range of Pe ≈ 1.5·10 − 1.5·10cell

2 5, whilst
Pe ≈ 8.5·10cell

3 for the initial hygrothermal conditions.

5.3. Moisture redistribution inside capillary-active interior insulation

The benchmark test example [15,16] deals with the moisture
redistribution inside an inhomogeneous multilayered wall
L = 0.420 mx thick and L = 0.001 my tall with capillary-active interior
insulation. The wall consists of three layers: brick A( ) δ = 0.365 mb ,
mortar B( ) δ = 0.015 mm and insulating material C( ) δ = 0.040 mi ,
shown in Fig. 13, The multilayered structure is airtight. Thermal
conductivity of the brick and the insulating material differs by a factor
of 11 in dry conditions. Initial temperature and relative humidity
conditions are both constant for the entire wall. At time zero there is a
sudden change in temperature and vapor pressure on either side of the
wall. The simulation time is 60 days.

The following boundary conditions of the third kind could be
prescribed on the left boundary at x = 0 m and y L0 ≤ ≤ y:

T α t φ β

t

= 0.0 °C and = 25.00 W/m K for > 0 = 0.8 and

= 1.8382·10 s/m for > 0,

a e e a e p e,
2

, ,

−7 (61)

on the right boundary at x L= x and y L0 ≤ ≤ y

T α t φ β

t

= 20.0 °C and = 8.00 W/m K for > 0 = 0.6 and

= 5.8823·10 s/m for > 0,

a i i a i p i,
2

, ,

−8 (62)

and zero Neumann boundary conditions were prescribed elsewhere:

φ
n

T
n

t∂
∂

= 0 and ∂
∂

= 0 for > 0.
(63)

The initial hygrothermal conditions of the structure were

φ T t= 0.95 and = 25 °C at = 0o o (64)

throughout the whole construction.
All the transport and materials properties for all three layers are

taken from [15] and are given by the following expressions. The
sorption isotherms were given by the following expression:
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with the exponent m n= 1 − 1/i i. The expressions for vapor perme-
ability δp and liquid water permeability Dl transport coefficients were
given by the following expressions:

⎛
⎝⎜

⎞
⎠⎟

δ W T D
μR T

W
W

p W
W

p
( , ) =

1 −

(1 − ) 1 − +
,p

va

w

sat

sat

2

(66)

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑D W a W

ρ
( ) = exp ,l

i
i

l

i

=0

5

(67)

and the relations for the effective thermal conductivity and specific heat
per volume for dry material, respectively, were given by the following
relationships:

λ λ λ W
ρ

c ρ c= + and = .eff m mst
l

pm m m
(68)

Corresponding material properties for each single layer are summar-
ized in Table 1.

A uniform mesh of M = 840 × 1 macro-elements was used. The
convergence criterion used was ϵ = 10−8, and the under-relaxation
parameter was set to ur=0.8. Time dependent analysis was performed
by running the simulation from the initial state with a time step value
of tΔ = 360.0, tΔ = 3600.0 and tΔ = 36 000.0 s. The purpose was to
calculate the moisture distribution after t=60 day.

The relative humidity and moisture distribution between the inside
insulation and the mortar layer after 60 days are shown in Figs. 14 and
15. The solution results of this three layered structure for all three time

Fig. 14. Relative humidity profile of the inside insulation and the mortar layer after
60 days. Comparison with [15,16] is shown.

Fig. 15. Moisture content profile of the inside insulation and the mortar layer after 60
days. Comparison with [15,16] is shown.
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step values closely match each other and the benchmark results.

6. Conclusions

The boundary element method has been formulated and imple-
mented to solve the two-dimensional time-dependent coupled non-
linear heat, moisture and air flow through a porous solid. Quadratic
basis functions were used to approximate the field functions and
constant interpolation for fluxes, and the linear variation of all
functions over each individual time step was assumed.

Three one-dimensional benchmarks consisting of moisture uptake
in a semi-infinite region, air transfer through a lightweight wall, and
moisture redistribution inside a multilayered wall with capillary-active
interior insulation, were analyzed. The simulations accounted for very
complicated coupled nonlinear processes. The numerical iterative
solution of each problem is therefore very demanding for several
reasons: the time and length scales of the individual transport
processes are very different, accurate modeling of diffusion and
convection is required, transport properties are functions of the driving
potentials, and boundary conditions of the third kind and the interface
conditions introduce additional severe nonlinearities. The good agree-
ment obtained with the test cases suggests that the simulation model
based on a BEM numerical technique can be used to simulate the
hygrothermal performance of building envelope components.
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