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Abstract 

A numerical model of particle motion in fluid flow under the influence of hydrodynamic and magnetic 

forces is presented. The Lagrangian particle tracking algorithm was developed being capable of 

simulating dilute suspensions of particles in viscous flows where gravity, buoyancy, drag, pressure 

gradient, added mass and magnetophoretic forces are taken into account. The method is used to study 

the behaviour of magnetite particles in a periodic cellular flow field under the influence of a magnetic 

field produced by electric wires placed in cell centres. For such a flow field it is known that particles 

in steady state merge into individual trajectories. The influence of the magnetic field on the particle 

trajectories is examined and an exponential model for the time evolution of the fraction of adhered 

particles to the electric wires is proposed. Three particle Stokes number values are considered: 0.01, 

0.1 and 1. The existence of a critical magnetic pressure coefficient was found, at which all particles 

end up to be adhered to the wires. The critical magnetic pressure coefficient was found to be 

proportional to the Stokes number. For sub-critical magnetic pressure coefficient, the particle 

trajectories are significantly altered by the magnetic field, both in their shape and in their number. 

Furthermore, in the sub-critical regime, the minimal distance of particles to the cell centres is larger 

for particles with smaller Stokes numbers. 
(Received in October 2013, accepted in March 2014. This paper was with the authors 2 months for 1 revision.) 
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1. INTRODUCTION 
 

Nano and micro particles with magnetic properties are increasingly gaining interest in several 

fields of science, like life sciences, natural sciences, and medicine or engineering sciences. 

The dimensions of magnetic nanoparticles are smaller than or comparable to the size of cells, 

viruses or proteins, enabling them to interact with biological agents directly and thereby 

providing a controllable means of tagging and addressing specific cells. In the case of 

development of novel actuators, e.g. for artificial muscles for robot locomotion, novel 

magneto-sensitive polymeric materials are one of the current research topics. Although in 

their final form these materials are elastic solids with a rubber-like matrix that is filled with 

magneto-active particles, the production process consists of mixing liquid components with 

magneto-active particles. Due to magnetic properties, the movement of the particles may be 

manipulated with an external magnetic field gradient, Pankhurst et al. [1]. Iron oxides, i.e. 

magnetite and maghemite, are the most frequently used because of their generally suitable 

magnetic properties and biological compatibility. The design and control of magnetic fields is 

an active research field (Lipus et al. [2]), as well as the effect of magnetic forces on particles 

in flows. This was considered by Yang et al. [3], who studied motions of magnetic 

nanospheres under the magnetic field in the rectangular microchannel, as well as by Zolgharni 
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et al. [4] who performed a numerical design study of chaotic mixing of magnetic particles in a 

microfluidic bio-separator. 

      Efficient algorithms for Lagrangian particle tracking in fluid flow are an ongoing research 

topic (Cohen Stuart et al. [5]) simulating particles in laminar and turbulent flows (Marchioli et 

al. [6]). In our work, as a starting point, the earlier work by Ravnik et al. [7] was chosen, 

where a BEM-FEM algorithm for a 2D flow simulation was coupled with an explicit 

Lagrangian particle tracking algorithm. The algorithm was extended to a 3D geometry in 

Ravnik et al. [8]. In order to realistically capture the particle response to fluid flow structures, 

a one-way coupling approach was implemented. The particles were moving due to the action 

of gravity, buoyancy, drag, pressure gradient and added mass forces. Since numerical 

simulation of dilute suspensions is the main target of this work, the coupling between the two 

phases is a one-way action of the fluid on the particles. The derived method can be extended 

to capture also flows with particles that have a high magnetic susceptibility, in the case when 

the fluid flows through the area of a non-uniform external magnetostatic field, which gives 

rise to a magnetophoretic force. The force is proportional to the magnetic field gradient acting 

on the magnetic moment of the particle. 

      Gravitational settling and suspension of particles has been under intense examination in 

the past as it is important to many areas of engineering and environmental sciences. Cellular 

flow regimes frequently occur in natural convection flows, resulting from thermal 

instabilities, and are thus important in separation engineering as well as in thermal 

engineering. Therefore, stochastic random flow fields as well as periodic cellular fields were 

already used as model problems. Maxey and Corrsin [9] computed statistics for the motion of 

small particles settling under gravity in an ensemble of randomly oriented, periodic, two 

dimensional cellular flow fields that are steady in time. They found that inertia, although 

weak, eventually causes all particles to settle out at a rate that over most parametric ranges is 

higher than in a still fluid. Particles with small free fall velocity and weak inertia show a 

strong tendency to collect along isolated paths. Maxey [10] studied the motion of small 

spherical particles in a cellular flow field. The study revealed the possibility that the particles 

remain suspended in the flow field, a phenomenon which was observed while studying 

plankton movement. Rubin et al. [11] presented a proof that given a dilute concentration of 

aerosol particles in an infinite, periodic, cellular flow field, arbitrarily small inertial effects are 

sufficient to induce almost all particles to settle. They showed that settling particles approach 

a finite number of attracting periodic paths. The structure of the set of attracting paths, 

including the nature of possible bifurcations of these paths and the resulting stability changes, 

is examined via a symmetric one-dimensional map derived from the flow. Influence of 

unsteady cellular flow on the gravitational settling rate of heavy spherical particles was 

studied by Fung [12]. The change in settling velocity of inertial particles in cellular flow was 

studied by Chan and Fung [13]. The problem was revisited recently by Marchioli et al. [14], 

who provided additional results. For the case of small naturally buoyant particles, segregation 

of particles in cellular flows was studied by Tallapragada and Ross [15]. Thus, particle 

movement patterns for the whole range of density ratios and Stokes numbers are available. 

      This paper analyses the effect of the magnetic force acting on the particles in a cellular 

flow field, identifying how the magnetic force alters the balance of gravity and hydrodynamic 

forces and what effect does the magnetic field have on the steady state particle trajectories. A 

special attention is paid to the influence of the magnetic field on the collection efficiency of 

electric wires. The cellular flow has been chosen because it is a model for a vortical flow, in 

which influence of the magnetic field can be studied. The flow is assumed to be Newtonian 

and the fluid not electrically conducting, magneto-hydrodynamics effects are not taken into 

account. 
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2. MAGNETIC FORCE ON A SINGLE PARTICLE 
 

The iron based particles are ferromagnetic in their monolithic form, but when they have 

diameters in the range of nanometers they behave in a similar manner as paramagnets. For 

larger, micrometer range particles, a slight deviation from paramagnetic behaviour in form of 

magnetic memory can be expected. Mixing of magnetic particles with an appropriate polymer 

to form a magnetic bead can help solve this problem. 

      In the case of a particle with a magnetic moment in a nonuniform external magnetic field, 

the Kelvin body force acts on a single particle. The established model for the magnetic force 

on a single particle reads as: 

  )(
2

1
= 0 HHVF pfpm


      (1) 

with  fp    the magnetic susceptibility difference between the particle and the fluid, and 

Vp the particle volume. The point value of the local magnetic field strength H


 at the location 

of a particle can be used since the distance between the poles of the particle is much smaller 

than the distance between the poles of the external source. Also, with H


 the magnetic field 

strength, the following expression HHHH


)2(=)(   is valid. Therefore, the force on a 

particle is proportional to the strength of magnetic field and the field gradient. Thus the final 

expression for the Kelvin body force is: 
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with the relative magnetization being defined as  HM fpr


 = . When two or more 

particles interact, additional attractive or repulsive forces are present, depending on the dipole 

orientation of the particles. 

 

3. LAGRANGIAN PARTICLE TRACKING 
 

Let us consider spherical particles of diameter dp, mass mp and density ρp. The mass of fluid 

encompassing the same volume as the particle is denoted by mf. The equation of motion for 

small rigid spheres was proposed by Maxey and Riley [16]. Neglecting the aerodynamic lift, 

time history effects and second order terms, due to small particle size, we may write: 
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      Here v


 is the velocity of the particle and u


 is the fluid velocity. The terms included in the 

equation are gravity, buoyancy, pressure gradient term, added mass term, drag (skin friction 

and form drag) and the magnetic force term. The Stokes drag term has been corrected using 

the heavy particle correction term, which is valid for particle Reynolds numbers up to 
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vtdtd  stands for the time derivative following 
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utDtD  is the time derivative following the fluid element. 

      Eq. (3) is rewritten in a non-dimensional form with H0, u0 and L being the characteristic 

magnetic field strength, the characteristic fluid velocity scale and the characteristic problem 

length scale, respectively. With 0/HHH
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where the Stokes number is defined as: 
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the settling velocity is: 
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the magnetic pressure coefficient (Sobral and Cunha [17]), which represents the importance of 

the magnetic pressure with respect to the dynamic pressure of the fluid phase, is: 
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and the parameters R and A are: 
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      In the case of very light particles (ρp << ρf) the parameters R and A tend to R   2, A   0. 

In the aerosol limit (ρp >> ρf), the parameters reach their limits as R   0, A   1, rendering 

the pressure gradient and added mass terms negligible. The term 
0.6870.15 pRe  is the heavy 

particle correction term, which is included in the equation only in the aerosol limit. For fluid 

particles (ρp = ρf), we have R = A = 2/3. 

      With the acceleration of the particle given in eq. (4) we may solve the particle equation of 

motion by employing the 4
th

 order Runge-Kutta method. We integrate the following six 

equations simultaneously: 
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      The unknowns are the particle location (x, y, z) and particle velocity (vx, vy, vz). The initial 

particle location and velocity must be known. In order to calculate the acceleration 

contributions on the right hand side, the velocity of the fluid, u


, has to be calculated at the 

location of the particle. The solution algorithm described in detail in Ravnik et al. [7] is used. 

 

4. CELLULAR FLOW IN MAGNETIC FIELD 
 

Cellular flow is an infinite field of two dimensional steady vortices. Let the domain be given 

by ][0,][0,= LL   with periodic boundary conditions. In this case the cellular flow velocity 
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with gravity acting in the negative z-direction; )m/s9.810,(0,= 2g


. The flow field is 

periodic, thus particles exiting the domain on one side are inserted back into the domain on 

the opposite side. 

      According to the study of Hong et al. [18], magnetite nanoparticles have a density of 
3kg/m5180=p  and a magnetic susceptibility of χp = 0.41. We will consider the behaviour 

of these magnetite nanoparticles suspended into a cellular flow (L = 1 m, u0 = 1.01 m/s) of 

water (ρf = 998 kg/m
3
, v = 1.01 mm

2
/s). This makes the non-dimensional time unit 

s0.99==
0u

L
t . Magnetic susceptibility of water is 

6109= f . The density ratio yields 

0.176=R  and 0.912=A  according to eq. (8). We consider particles of three different 

diameters, which have Stokes numbers of St = 0.01, St = 0.1 and St = 1 and settling velocities 

of 0.0776, 0.776 and 7.76 given by eq. (6), respectively. 

      Let us consider a magnetic field produced by a long thin straight electrical wire running in 

the y-direction. The magnetic field strength H


 of an arbitrary electrical conduit may be 

calculated using the Biot-Savart equation: 
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where I denotes the electric current, r is the distance from an observation point to the wire and 

α is the angle between the observation point and the x-axis. Using this result, the magnetic 

force (2) may be evaluated for the case of infinite straight wire conduit as: 
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      We consider thin electric wires placed in the centre of each vortex and assume that the 

wires do not disturb the flow field. The electric current runs in the opposite direction in the 

neighbouring wires. The resulting magnetic field is calculated by summation of the 

contributions of each wire. Considering (12), we may write the nondimensional contribution 

of the magnetic forces to the particle acceleration as: 
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with i denoting the i
th

 wire, magnetic pressure coefficient being 
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0  and ri represents the nondimensional distance 

from the particle location to the i
th

 wire. 

      In the simulation 2
.
10

4
 particles were included. Initially, the particles were distributed 

randomly in the cellular flow field having velocities equal to the fluid velocity. It has been 

shown (Fung [12]) that initial position and initial velocity of the particles have no influence 

on the steady state particle trajectories. However, in our case, when magnetic forces are 

present, the number of particles which adhere to the wires depends on the initial position and 

velocity due to the fact that the magnetic force depends on the distance from the particles to 

the wires. Thus, the fraction of particles that adhere to the wires in steady state is different for 
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each different initial distribution of particles, while the steady state particle trajectories are 

unaffected by the initial conditions. 

      A time step of 10
-4

 was used to advance the particles for up to 1.1
.
10

7
 time steps until the 

total nondimensional time of 1100.0 was reached. The time span was long enough for the 

particle motion to reach steady state, i.e. the particles found stationary paths through the flow 

field repeating them over and over again due to the periodic boundary conditions. Shorter 

total simulation times were used in cases when steady state was reached earlier. Several 

electric currents were used, which gave magnetic flux densities ranging between B0 = 1 mT to 

B0 = 30 mT. The corresponding magnetic pressure coefficients were Cpm = 7.89
.
10

-4
 and 

0.5=pmC , respectively. 

      As the simulation progresses, the particle’s movement is affected by gravity, vertical flow 

structure and the magnetic force. The magnetic force moves the particles towards the wires. 

We assume the wires to have a nondimensional diameter of 0.01. If the particle hits a wire, it 

is assumed to adhere to the wire. Since the magnetic force decreases very rapidly away from 

the wire ( 31/r ), the number of particles attached to the wire depends on the magnetic flux 

density. 

 

5. RESULTS 
 

5.1  Case of St = 0.1 and Cpm = 0.08 
 

Let us examine the result of the simulation with particles having St = 0.1 in the case where the 

electric current in the wires produces a magnetic field of Cpm = 0.08. At the beginning of the 

simulation, particles are randomly distributed. As time progresses, gravity forces the particles 

in a downward direction. Flow induced drag accounts for the vortical structure and the 

magnetic forces tend to push the particles towards the wires. During the simulation some 

particles are adhered to the wires while others manage to avoid the influence of the magnetic 

forces and find their way through the flow field. Their movement is then governed mainly by 

gravity and drag. Steady state is reached after a long time. In the steady regime, particles 

repeatedly travel through the flow field always along the same paths due to periodic boundary 

conditions. The same phenomenon was observed for the flow field without magnetic forces. 

      In order to assess the influence of the magnetic force, we calculated the forces acting on 

each particle at each time step. For each position in the flow domain, the magnitude of forces 

on each particle crossing that position were averaged and finally divided be the sum of all 

forces, thus calculating the relative effect of active forces. As expected from eq. (13), the 

magnetic force dominates all other forces in the vicinity of the wires. Drag is the predominant 

force between the vortices, where particles travel downwards. Gravity dominates in areas 

where particles travel sideways, i.e. perpendicularly to the direction of gravity. The 

contributions of added mass and pressure correction terms are small, reaching up to 

maximally 10 % of the total force acting on particles. 

      Choosing a single particle, a time trace of forces acting on the particle is presented in Fig. 

1. Since gravitational and buoyancy contributions to the total force do not change with time, 

we present the forces relative to this value. The graph presents only steady state, therefore the 

first 10
5
 time steps were omitted. We can readily observe the periodic nature of the forces. As 

the particle repeatedly travels through the periodic flow structure, it encounters the same 

forces again and again. Since the particle in question found its way through the flow field 

without being pulled by magnetic force towards the wire, we observe that the magnetic force 

along most of its path is at least an order of magnitude smaller than gravity and two orders of 

magnitude smaller than drag. 
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Figure 1: Temporal trace of forces acting on a single particle (left) and temporal development 

of the distance between the wire and the closest particle (right); case of St = 0.1, Cpm = 0.08. 

 

      In each time step during the simulation we calculated the distance from the wires to the 

nearest particle. The result is shown in the right hand side of Fig. 1. During the initial phase of 

the simulation, a lot of particles adhere to the wires making the minimal distance nearly zero. 

As time progresses, less and less particles are captured by the magnetic field and finally all of 

the remaining particles manage to avoid the wires. Particle motion is then governed mainly by 

gravity and drag, thus the particles are thrown out of the vortices, which makes the minimal 

distance to wires (which are located in centres of vortices) larger. Finally, when steady state is 

reached, the minimal distance converges to a constant value. 

      Next, we examine the number of particles adhered to the electric wires by expressing this 

number as a fraction of all particles S. We observe that the fraction of adhered particles 

increases rapidly in the beginning of simulation. The flux of particles to the wires decreases as 

the simulation progresses. It stops entirely when steady state is reached. The behaviour seems 

to be governed by an exponential function. It is well known that exponential behaviour is 

found in cases where the flux (of, for example, heat or mass) is proportional to the amount of 

heat or mass. This situation occurs in our simulation as well – the number of particles 

adhering to the wires is proportional to the number of particles in the vicinity of the wires. 

Denoting the fraction of adhered particle in steady state by S∞, we performed a least squares 

fit of the following model: 

 ,1= 




  



teSS       (14) 

which for the case St = 0.1 and Cpm = 0.08 yielded S∞ = 0.22, α = 3.02 and ß = 0.77. 

 

5.2  Influence of magnetic field strength 
 

Now, let us consider the effect of the magnetic field. Keeping the value of St = 0.1 constant for 

the particles, we varied the magnetic pressure coefficient up to Cpm = 0.5. Remembering that 

the magnetic force scales with a square of B0 and linearly with Cpm, we found that for a large 

magnetic pressure coefficient all particles adhere to the wires. Let the minimal magnetic 

pressure coefficient, which causes all particles to adhere to the wires, be called the critical 

magnetic pressure coefficient. Above the critical magnetic pressure coefficient the magnetic 

force is strong enough to pull all particles towards the wires regardless of the gravity and drag 

caused by the vortical flow structure. For Cpm ≥ 0.5 and St = 0.1 all particles end up adhered to 

wires at steady state. The time development of fraction of adhered particles is shown in Fig. 2 

(left), where a comparison between different values for Cpm can be observed. In all cases the 
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exponential model (14) describes this behaviour very well, with the fitting constants given in 

Table I. 
 

      

Figure 2: Time development of fraction of particles attached to the wires for different 

magnetic field strengths (St = 0.1) – left; Fraction of adhered particles S∞ depends 

highly on the magnetic pressure number Cpm – right. 

 

Table I: Minimal distance to wire dmin, fraction of adhered particles in steady state S∞,  

exponential fit of the number of adhered particles in steady flow regime, α, ß and  

time t99 at which 0.99
.
S∞ of particles are adhered to the wires. 

B0 [mT] Cpm dmin S∞ α ß t99 

    St = 0.1  
0  0   0.239   0.0        

5  0.02   0.239  0.093   0.85   0.67   12.5  

10   0.08   0.2385  0.215   0.71   0.63   19.2 

15   0.18   0.237   0.34   0.58   0.62   28.6 

20   0.32   0.232   0.53   0.45   0.60   48.6 

25   0.5   0.0  1.0   0.26   0.42   912* 

30   0.71   0.0   1.0   0.27   0.66   72.8 

    St = 0.1  
0  0   0.20778   0.0        

5  0.02   0.20765   0.10   2.91   0.89   1.97 

10   0.08   0.181   0.22   1.77   0.77   3.46 

15   0.18   0.169   0.38   1.22   0.69   6.89  

17.5   0.24   0.0   1.0   0.19   0.85   41.8*  

20   0.32   0.0   1.0  0.41   0.88   15.8  

25   0.5   0.0   1.0   0.77   0.90   7.33  

   St = 1.0  
0  0   0.0437  0.0      

1  0.0008   0.0433  0.033   2.81  1.12   1.55  

2  0.0032   0.0425  0.065   2.98   1.14   1.46  

3  0.0071   0.0415  0.092   3.04   1.11   1.45 

3.5  0.0097   0.03266   0.104   2.96   1.07   1.51 

3.75  0.0111   0.0   1.0   0.073   0.8   177* 

4  0.0126   0.0   1.0   0.15   1.47   10.4 

5  0.0197   0.0   1.0   0.25   1.46   7.32 

(* model fit is poor close to the critical magnetic pressure coefficient) 
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      In Fig. 3 we compare steady state distribution of St = 0.1 particles for different magnetic 

pressure coefficients. When the magnetic field is weak (Cpm = 0.02), the particles merge into 

an isolated trajectory, independent of the initial position and initial velocity. The minimal 

distance to vortex centres, which is listed in Table I, is only slightly smaller than in the case of 

no magnetic field. However, when the magnetic pressure coefficient is increased, we observe 

additional trajectories and the minimal distance to the vortex centres is significantly reduced. 

The magnetic force bends the trajectories and allows additional trajectories to be established. 

      In Table I, the steady state minimal distance between the wire and the nearest particle is 

shown for different Stokes numbers and magnetic pressure coefficients. For low magnetic 

fields and low Stokes numbers the value approaches the theoretically largest value of 0.25. As 

the magnetic pressure coefficient increases, the particle paths are moved closer to the wires 

and closer to the vortex cores and thus the minimal distance decreases. The process continues 

up to the critical magnetic pressure coefficient, when all particles are adhered to the wires. 
 

   

   

    

Figure 3: Steady distribution of particle positions;  

 top row: St = 0.01, left Cpm = 0.02, centre Cpm = 0.18 and right Cpm = 0.32;  

 middle row: St = 0.1, left Cpm = 0.02, centre Cpm = 0.08 and right Cpm = 0.18;  

 bottom row: St = 1.0, left Cpm = 0.0032, centre Cpm = 0.0071 and right Cpm = 0.0097. 

 

5.3  Influence of Stokes number 
 

Next, we considered the influence of the Stokes number. At low Stokes number (St = 0.01), 

the drag force dominates the behaviour of the particles. Particles follow the fluid flow almost 

ideally making many revolutions in vortices before they are either adhered to the wires or 

thrown out of the vortices. At high Stokes number (St = 1), the influence of the flow on the 
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particle movement is small and particle behaviour is governed mainly by gravity and 

magnetic forces. Thus, at high St a weak magnetic field is able to adhere a large number of 

particles to the wires, whereas at low St a much stronger magnetic field is required in order to 

achieve the same effect. This can be observed by examining the fractions of adhered particles 

S∞ in steady regime, listed in Table I. 

      Consider now the steady state distributions for St = 0.01 particles, shown in Fig. 3. With 

Cpm = 0.5 all of the particles travel around the vortices, circling the wires. Some make many 

revolutions, but eventually after a long time (t = 215) each and every one of them is pulled 

towards the wires by the magnetic force and end up adhered to the wires. If the magnetic 

pressure coefficient is increased even further to Cpm = 0.71, the particles are captured by the 

wires faster, only t = 100 is needed for all particles to be adhered. This is noticeable when 

comparing the fitted ß value in Table I. The ß is smaller when particles are adhered faster. 

      Particles having a high Stokes number find their way through the vortices, their path 

leading mostly in the direction of gravity. The drag force does not dominate the behaviour, 

but rather only mildly alters the motion. As the electric current is injected into the wires the 

resulting magnetic field of Cpm ≥ 0.0111 is already strong enough to adhere all of the particles 

to the wires. A magnetic field of Cpm ≤ 0.0071 on the other hand only slightly alters the path of 

the particles. The minimal distance from particles to the wires (Table I) increases only slightly 

when the magnetic pressure coefficient is increased. Only a small percentage of particles end 

up adhered to the wires, as can be seen by examining S∞ in Table I. When the magnetic 

pressure coefficient is increased from Cpm = 0.0071 to Cpm = 0.0126, the magnetic force is 

strong enough such that all particles are adhered to the wires. 

 

5.4  Critical magnetic pressure coefficient 
 

Comparing the critical magnetic pressure coefficient that is required to adhere all particles to 

the wires, we found that it decreases with increasing Stokes number. At St = 0.01, a magnetic 

pressure coefficient of Cpm = 0.71 is required, while at St = 0.1, Cpm = 0.32 is needed and 

finally at St = 1.0 only Cpm = 0.0126 is necessary. When the magnetic pressure coefficient is 

near the critical value, the increase of the fraction of adhered particles with time does not 

follow closely the model proposed in eq. (14). The model fit is poor compared to other 

magnetic pressure coefficients, where the model closely fits the data. A certain lack of 

accuracy can be observed in Fig. 2 for St = 0.1 and Cpm = 0.32. This observation holds for all 

considered Stokes numbers. The reason for this phenomenon can be explained in the 

following way: at the beginning of simulation, particles close to the wires are adhered 

quickly. Their behaviour follows closely the proposed exponential model. Later, since the 

magnetic pressure coefficient is close to the critical value, other particles are also drawn 

towards the wires, but since the magnetic force is almost balanced with drag and gravity, this 

procedure takes longer and is not in accordance with the exponential model. The accuracy of 

the exponential fit deteriorates at low Stokes numbers, where particles make many revolutions 

before adhering to the wires. 

 

5.5  Minimal distance to the wires 
 

Examining the minimal distance from particles to wires in Table I, we observe that the 

distance is largest for small Stokes number, while particles with large Stokes number are able 

to travel closer to the wires. At low Stokes number, drag plays an important role in 

determining the trajectory of the particles, forcing them out of the vortices. When a sub-

critical magnetic pressure coefficient is applied, the particles are only slightly pulled towards 

the centres of the wire. On the other hand, particles with high Stokes number are able to travel 
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through the vortices, since gravity dominates over drag. Here, already a small magnetic force 

pulls them even closer to the wires. 

 

5.6  Fraction of adhered particles 
 

In Fig. 2 (right) we examine the dependence of the steady state value of the fraction of 

adhered particles S∞ on the magnetic pressure coefficient. For all Stokes numbers we observe 

an existence of a critical magnetic pressure coefficient, which causes all of the particles to 

adhere to the wires. For large Stokes numbers the critical magnetic pressure coefficient is 

smaller than in the case of smaller Stokes numbers. This can be explained by the fact that 

vortical flow has less effect on the particles in case of large Stokes numbers and particles are 

able to reach the vicinity of the wires. For small Stokes numbers, the particles tend to be 

transported out of the vortices by the flow and thus away from the area where magnetic force 

is large. It can also be observed that the dependence of the fraction of adhered particles on the 

magnetic pressure coefficient has a large gradient close to the critical magnetic pressure 

coefficient. The high gradient, i.e. the jump in S∞ when approaching the critical magnetic 

pressure coefficient, is largest in the case of low Stokes numbers. For example, for  

Cpm = 0.0097 only about 10 % of the particles are adhered to the wires, while at Cpm = 0.0111 

all of the particles are adhered to the wires. This gradient decreases when the Stokes number 

is increased. 

 

6. CONCLUDING REMARKS 
 

Cellular flow is a model, which enables study of particle transport phenomena. As a well 

defined test problem, it is frequently used in detailed studies of particle motion in fluid flow. 

In this study we extended the test problem by applying a magnetic field by placing electric 

wires in cell centres and studying the behaviour of magnetite nanoparticles in water. Initially 

the particles were randomly distributed in the flow field. Lagrangian particle tracking method 

was used to simulate dilute suspension of particles taking into account gravity, buoyancy, 

drag, pressure gradient, added mass and magnetophoretic forces. 

      We observed an existence of a critical magnetic pressure coefficient, which causes all of 

the particles to adhere to the wires. The critical magnetic pressure coefficient increases with 

increasing particle Stokes number. Looking at the time history of the fraction of adhered 

particles we proposed an exponential model, which describes the phenomena very well. The 

proposed model can be used to predict the time needed for all particles to adhere at a chosen 

magnetic pressure coefficient. Also, the influence of the magnetic pressure coefficient on the 

steady state particle trajectory was examined. We found that under a magnetic field influence 

particles in steady state merge into isolated trajectories, similarly as in the non-magnetic case. 

However, the trajectories are significantly altered; particle paths are moved closer to the 

source of the magnetic field and even the number of trajectories is changed. 

      The performed computational study can therefore help to better understand the interplay 

of gravitational, hydrodynamic and magnetic forces acting on particles suspended in cellular 

flows. 
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