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Abstract

In this paper we derive a boundary-domain integral formulation for the
energy transport equation under the assumption that the fluid properties,
through which the energy is transported by diffusion and convection, are
spatially and temporally changing. The energy transport equation is a sec-
ond order partial differential equation of a diffusion-convection type, with
the fluid temperature as the independent variable. The presented formula-
tion does not require a calculation of the temperature gradient, thus it is,
for a known fluid velocity field, linear.

The final boundary-domain integral equation is discretized using a domain
decomposition approach, where the equation is solved on each sub-domain,
while subdomains are joint by compatibility conditions. The validity of the
method is checked using several analytical examples. Convergence properties
are studied yielding that the proposed discretization technique is second
order accurate.

The developed method is used to simulate flow and heat transfer of
nanofluids, which exhibit properties that depend on solid particle concen-
tration. A Lagrange-FEuler approach is used.

Keywords: boundary element method, energy transport equation, variable
material properties, nanofluids



1 Introduction

Many natural phenomena involve energy transfer, which is governed by the
diffusion and convection transport processes. In nature and for most engi-
neering purposes, heat transfer occurs in environments, where the velocity
of the fluid changes within the domain in question. Fluid properties, such
as density, specific heat and heat conductivity are usually considered as
constant.

However, there are examples, where changes in fluid material properties
must be considered. One example is a case, where large temperature dif-
ferences are present in the simulation domain. Since material properties
are temperature depended, these must be considered. Another example are
nanofluids. These are suspensions of nanometre sized particles in a base
liquid. The properties of the suspension (when modelled as a single phase
liquid with modified properties) depend on the concentration of the parti-
cles, which in turn depends on the flow field.

Solution of the diffusion-convection partial differential equation is a chal-
lenging task. Many numerical algorithms have been proposed. In terms of
the boundary element method by using the diffusion-convection fundamen-
tal solution, the problem can (at least for constant velocity field and con-
stant coefficient) be described by pure boundary integral equations. This
approach has been extensively studied in the past, where methods of solu-
tion have been proposed handling the problem up to very high Péclet num-
bers (Skerget et al. [1], Qiu et al. [2]).

To solve the problem of variable velocity, a decomposition of the velocity
field into a constant and variable part has been proposed. The decomposition
leads to a domain integral involving the variable part of the velocity field
and the unknown field function. DeSilva [3] used this approach to solve
the transient conduction convection in 2-D. More recently, several authors
solved the diffusion-convection equations with variable coefficients (Rap et
al. [4]). Decomposition to constant and variable part has been used here as
well.

Ravnik et al. [5, 6] proposed an alternative approach, where the gradient
of the coefficient is needed and gradient of the field function is not needed.
Thus, the final integral equation includes only the unknown function on the
boundary and in the domain and its flux on the boundary. The proposed
equation is linear and after discretization requires only a single solution of
a system of linear equations to obtain the solution. In this paper, we have
applied this method for the solution of the energy transport equation with
variable material properties.

2 Governing equation

We consider a domain € with a boundary I' filled with a fluid. Let 7 € Q
denote the position in the domain and let ¢ be the time. In the most general



case, the fluid density, p = p(7, t), depends on time and location. If the fluid
velocity field is denoted by ¢ = ¢(7,t), the mass conservation law requires
that 9

8—f+v-(pﬁ):o. (1)
The energy equation for the fluid written with temperature T'(7,t) as an
independent variable is usually stated as

p (% - ﬁ(c,,:r)) -V (WT) +8, 2)

where the heat capacity ¢, = ¢,(7,t), thermal conductivity k = k(7,t) and

domain heat sources S(7,t) all vary with time and location. Combining (1)
and (2) one can show that the following is also true:
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This form of the energy transport equation is more convenient, as the density
and heat capacity are joined in all terms, and can thus be treated as a single
material property.
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3 Derivation

As the governing equation is an unsteady diffusion-convection equation with
sources, a fundamental solution, which would enable a boundary only rep-
resentation of the equation does not exist. Due to the fact that the material
properties and the velocity field are expected to vary with location and time,
we employ the fundamental solution for the diffusion operator, since in this
way the integrals, that will be needed, will not depend on time, material
properties or the velocity field, and will have to be calculated only once for
a chosen computational mesh. Thus, eq. (3) is multiplied by «*, which is
the fundamental solution for the diffusion operator
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and integrated over the domain yielding
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Using the following vector algebra rule: u*V - (kﬁT) =V (u*kﬁT) —kVT-
Vu* we write
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The first domain integral on the left hand side of (6) may be transformed
into a boundary integral using the Gauss divergence theorem as
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Using 6(kT) = kVT + TVk we rewrite the second integral on the left hand
side of (6) as
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Using V - (kTVu*) = V(kT) - Vu* + kTV2u* we obtain
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The first domain integral on the left hand side may be transformed into a
boundary integral using the Gauss divergence theorem as
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Since u* is the fundamental solution of the Laplace equation, the following
integral equals [, kTV?u*dQ = —k(&)T(§) and we may write
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c(€) is the geometric factor defined as ¢(£) = a/4m, where « is the inner

angle with origin in . Temperature at the boundary T'(7) or heat flux on

the boundary ¢(7) = VT'(7) - i are prescribed as boundary conditions.
Next, we following definition of divergence of a product is used

WV - (pe,T5) = V - (u* pe, TF) — pe, T - Vu*

to arrive at

— — —

c(ER(E)T(E) + /kTVu ﬁdr:/u*kﬁ:r.ﬁdr
N
/ (peptu*T)dQ —|—/ T(VE + pey@) - Vu*d
Q

—/ Mu*dﬁ—k/ SurdQ) (12)
o Ot Q

The first domain integral on the right hand side may be transformed into a
boundary integral using the Gauss divergence theorem as
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The time derivative term is separated by
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to yield the final boundary-domain integral form of the energy equation
with variable material properties:
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4 Discretization

At time t for a time step At the backward Euler finite difference approxi-
mation is used to approximate the time derivative as

aT
E = ﬂlT + ﬂQTc + ﬁ?,Tp (15)
where 31 = %, B2 = —% and (3 = ﬁ. T is the temperature in the

next time step, T¢ is the temperature in the current time step and T? is the
temperature in the previous time step. Using (15) in (13) we get
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We use domain decomposition to write the discrete system of equations.
We make a mesh of the entire domain 2 and name each mesh element
a subdomain. Then equation (16) is written for each of the subdomains.
We use shape functions to interpolate field functions and flux across the
boundary and inside of the subdomain. A function, e.g. temperature, is
interpolated over a boundary elements as T = > ¢;T;, inside each subdo-
main as T = Y ®,T;, while flux is interpolated over boundary elements as
g =Y. ¢iq;. The following integrals must be calculated:

= [ eumar. (6= [ sarar. (17)
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The square brackets denote integral matrices. Each source point location
yields one row in these matrices. The source point is set to all function and
flux node in each subdomain. By letting curly brackets denote vectors of
nodal values of field functions, we may write the discrete energy equation
as:
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The terms involving the unknown temperature values {7} may be summed
up (in node by node sense) to form:

( [H{k} + [Az] {pcpva} + [Ay] {pcpvy } + [As] {pepvs}
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The final step involves taking note of the boundary conditions and setting
up the system matrix accordingly. Either temperature {7} or flux {q} may
be prescribed. The final system is linear as long as the material properties,
flow velocity and sources do not depend on temperature. If they do, an
iterative scheme must be set up which involves repeated solutions of the
system along with updating of the material properties, flow velocity and
sources.

5 Test cases

In order to verify the validity of the derivation and implementation we
performed extensive tests. We chose a cubical domain (0,0,0) x (1,1,1)
where an incompressible fluid flows with a velocity field 7 = (z, —2y, z). We
consider two cases, A and B, which both feature variable material properties
in the domain. Adittional parameter, s, was introduced in order to adjust
the magnitude of variation of material properties. Heat sources were added
to the domain so that the resulting temperature solution was T, = xyzt.
Material parameters and sources are listed in Table 1.

A combination of Dirichlet and Neumann boundary conditions was used.
Two opposite facing walls had a known temperature prescribed, while the
other four walls of the cubical domain had a known heat flux prescribed.
The domain and the boundary conditions are shown in Figure 1. The tem-
perature field was initialized using the analytical solution at ¢t =0 as T' = 0.
The solution was advanced through time using a time step of At = 0.01
until £ = 1, when the results are analysed.

The meshes chosen to solve the two tests had 23, 43, 83, 163, 323 hex-
ahedral elements with 52, 93, 173, 333, 653 nodes. The nodes were placed
equidistantly in the domain, so the element sizes were h = 0.200,0.111,
0.058,0.030,0.015.

In order to compare the simulation results with analytical values, a root-
mean-square norm,

1/2
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Figure 1: The domain and a vector based visualisation of the flow field.
Boundary conditions are also shown.

case | pcp k S
A 1 2 + cos(kmayz) | wyz + wt(y?2% + 22 (y? + 2%))k sin(rzyzk)
B |1+a" 1+ 2" y(—tz" "tk + 2(1 + 2(1 + tk)))

Table 1: Material properties and source for the test cases solved. An addi-
tional parameter k is used to increase the severity of spatial and
temporal changes in material parameters. k = 1, 2,4 were consid-
ered.

has been used. Here, i sums values from nodes inside of the domain (bound-
ary conditions are skipped) so T, ; are the nodal values obtained on a mesh
with element size h.

The norms for both test cases are shown in Figure 2. We observe good con-
vergence of results, accuracy increases when element size decreases. Three
values of the parameter k = 1,2, 4 were used. Since larger k corresponds to
stronger spatial and temporal variation of material parameters, we observe
lowering of accuracy with increasing .

Since the element sizes decrease by a factor of 2 it is possible to employ
the Richardson extrapolation to estimate the order of the proposed method.
The method’s order is defined as

1 ||Th/2_Ta||)
O = lo . 21
log 2 g(HTh—TaH 2D

A slope, which corresponds to second order accuracy, is shown in Figure



2. We observe, that the norms for both cases exhibit convergence slopes
which are comparable to the second order slope. Equation (21) was used
to calculate the method’s order using all available results. We obtained
O = 1.996 £ 0.46, which clearly indicates that the developed method is
second order accurate.
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Figure 2: Norms expressing the difference between simulation and analytical
results. Second order convergence slope is also shown.

6 Application to nanofluid simulation

A nanofluid is a stable suspension of nanometre sized particles suspended
in a fluid. Typical application of nanofluid is enhancement of heat transfer,
thus particles are usually metal oxides having better heat transfer properties
than the base fluid.

Consider nanoparticles distributed in the fluid. Local concentration of
nanoparticles is
N(7)
() = VR (22)
where N(7) is the number of nanoparticles in a local volume V() around a
location 7. As nanoparticles are extremely small, it is impossible to simulate
a number large enough to account for the actual concentration. Thus, a small
number of particles it tracked (e.g. 10°), which represent a fraction of the
bulk volume fraction.

We estimate the particle volume fraction as

L / o)
(M) =0+ ¢ (%fv NG 1), (23)



where g is the bulk solid nanoparticle volume fraction and ¢’ is the mag-
nitude of an oscillating part, which is estimated by Lagrangian tracking of
individual particles.

As the flow field transports the particles the changes in local volume
fraction are reflected in spatial and temporal changes of heat conductivity,
heat capacity and density of the nanofluid. In order to properly estimate
the heat transport, a transport equation with variable material properties,
such as eq. (3) must be solved.

Nanoparticles have a very low Stokes number, thus they follow the fluid
flow closely. However, due to their small size they also exhibit Brownian
motion due to constant molecular bombardment. Moreover, in cases where
temperature gradient is present, the higher momentum of warmer fluid
molecules giver rise to the thermophoresis effect. Thermophoresis is the
result of averaged Brownian motion in a fluid.

The thermophoresis effect has been studied in gases by Epstein [7] who
developed a model for the average velocity of the particle due to ther-
mophoresis. This was corrected for the use in liquids by McNab and Meisen
[8], who have shown, that thermophoresis is slower in liquids. Recently,
Michaelides [9] realised that thermophoretic velocity depends strongly on
fluid and nanoparticles type, so he performed Monte-Carlo simulations to
provide estimates for several common nanofluids. According to this results
aluminium oxide - water nanofluid has the following thermophoretic velocity

—1.417 =
Ty = —1264 (1) w VT (24)
To Pf T
where r is the nanoparticle radius and rg = 1nm. The thermophoretic force
is then calculated by ﬁtp = 3murdiyy. Finally, movement of particles may
be estimated by

7(t + At) = 7(t) + (U () + Upp) At (25)

where ¢;(7) is the velocity of the fluid at the position of the nanoparticle.

The solution of the energy equation as well as the Lagrangian particle
tracking were included in our in-house BEM based nanofluid flow and heat
transfer solver [10]. A standard natural convection test case was solved - an
insulated cubic cavity with two opposite walls heated and cooled [11] using
a 17% node mesh. A Al,O3 nanofluid was considered.

Table 2 shows the comparison of the time averaged heat fluxes and Fig-
ure 3 shows time traces of heat flux. While looking at the time traces, we
observe small oscillations of heat flux due to variations in nanofluid prop-
erties. The oscillations increase in magnitude as the Rayleigh number is
increased. This is due to the fact that bouyant forces increase with Rayleigh
number and thus the flow field in the cavity is more complex which in turn
results in higher variation of particle concentration. The time average values
of the Nusselt match reference results for low Rayleigh numbers, while at



higher Rayleigh number values, the variations in nanofluid properties yield
a slightly lower heat transfer rates.

Ra | [11] | present || Ra | [11] | present
103 | 1.345 | 1.345 || 10° | 4.806 | 4.905
10* | 2.168 | 2.179 | 10° | 9.817 | 10.15

Table 2: Simulation of heat transfer of Al;O3 nanofluid in a 3D cubic cavity
with differential heated walls. Heat transfer through heated wall
is shown expressed with a Nusselt number as a function of the
Rayleigh number (Ra). Average solid particle volume fraction was
wop = 0.1. In the study [11] nanofluid properties were estimated
using the average solid particle volume fraction and were assumed
constant in space and time.
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Figure 3: Heat transfer though a vertical wall expressed as Nusselt number
versus time for four different Rayleigh numbers.

7 Summary

The paper presents a boundary element based numerical method for the
solution of the energy transport equation, when the fluid properties (density,
specific heat, thermal conductivity) exhibit spatial and temporal variations.
An example of such fluids are nanofluids, which are stable suspensions of
nanoparticles in a base fluid. Since the concentration of nanoparticles varies



with the fluid flow, the average properties of a nanofluid, when modelled as
a single phase, vary with location and time.

The derived boundary-domain integral formulation (equation 14) does
not include the gradient of the temperature field. For a known flow velocity
field, this enables finding the unknown temperature field using a single solu-
tion of the discrete system of linear equations. The proposed method was
verified by analytical test cases and was found to be second order accurate.
Furthermore, we used the developed method in a Lagrange-Euler model for
nanofluid simulation.
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