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Analytic and numerical solutions for linear and nonlinear
multidimensional wave equations

M. I. Adwana, M. A. Al-Jawarya, J. Tibautb and J. Ravnikb

aDepartment of Mathematics, College of Education for Pure Sciences (Ibn AL-Haitham), University of Baghdad, Baghdad, Iraq;
bFaculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia

ABSTRACT
We develop three reliable iterative methods for solving the nonlinear 1D, 2D and 3D
second-order wave equation and compare the results with a discretization-based solver. The
iterative Tamimi–Ansari method (TAM), Daftardar–Jafari method (DJM) and the Banach con-
traction method (BCM) are used to obtain the exact solution for linear equations. For nonlin-
ear equations and practical problems, however, one obtains the approximate solutions that
converge to the exact solution, if one exists. The convergence analysis of the three methods
is shown using the fixed-point theorem. The methods prove to be quite efficient and well
suited to solve this kind of problems. We present several examples that demonstrate the
accuracy and efficiency of the methods. We also compare the methods with a method
based on discretization (Boundary Domain Integral Method (BDIM)). The BDIM uses a stand-
ard domain grid and discretizes the integral form of the governing equations. The iterative
methods were developed with MathematicaVR 10, while BDIM is a proprietary development.
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1. Introduction

The wave equation is a partial differential equation
for a scalar function that determines the wave
propagation phenomena. It depends on time and
one or more spatial variables. Apart from discret-
ization approaches, such as finite element and finite
volume approaches, many other methods have been
proposed to solve the wave equation. For example,
the Adomian decomposition method (Cheniguel,
2013), the optimal asymptotic homotopy method
(Ullah et al., 2015), the Laplace Transform method
(Oke, 2017), the high-order stereomodelling method
(Tong, Yang, Hua, & Wang, 2013), the Variational
Iteration Method (Biazar & Ghazvini, 2008), the new
implicit second-order alternating direction method
(Qin, 2009), the difference potential method (Britt,
Tsynkov & Turkel, 2018), the fixed point iteration
method, the Newton method (Shevchenko, 2008)
and the local fractional variational iteration method
(Jassim, 2015). In addition, there are many methods
that provide an approximate solution for different
types of differential equations (El-Ajou, Oqielat, Al-
Zhour, Kumar & Momani, 2019; Ghanbari, Kumar, &
Kumar, 2020; Goufo, Kumar & Mugisha, 2020; Jleli,
Kumar, Kumar & Samet, in press; Kumar, Kumar,
Abbas, Al Qurashi & Baleanu, 2020; Kumar, Kumar,

Momani, Aldhaifallah, & Nisar, 2019; Kumar, Nisar,
Kumar, Cattani & Samet, in press).

A new iterative method was proposed by
Daftardar-Gejji and Jafari (DJM; Daftardar-Gejji &
Jafari, 2006). The DJM has been used by many
researchers for the treatment of linear and nonlinear
ordinary differential equations (Bhalekar, & Daftardar-
Gejji, 2012), partial differential equations of integer
and fractional order (Daftardar-Gejji & Bhalekar, 2010;
Yaseen, Samraiz, & Naheed, 2012), the Fokker–Planck
equation (Al-Jawary, 2016), Korteweg–de-Vries equa-
tions (Ehsani, Hadi, Ehsani, & Mahdavi, 2013), the epi-
demic model and the prey and predator problems
(Al-Jawary, 2014), Volterra integro-differential equa-
tions (Al-Jawary, & Al-Qaissy, 2015) etc.

A semi-analytical iterative technique was pro-
posed by Temimi and Ansari (TAM) (Temimi &
Ansari, 2011) to solve nonlinear problems. It has
been used to solve many differential equations, such
as second-order nonlinear ODEs that occur in physics
(Al-Jawary, Adwan & Radhi, 2020), nonlinear Burgers
advection-diffusion equations (Al-Jawary, Azeez &
Radhi, 2018), Fornberg–Whitham equation (Almjeed,
2018), solving chemistry problems (Al-Jawary &
Raham, 2017), Convective Straight and Radial Fins
with temperature dependent thermal conductivity
problems (Abdul Nabi & Al-Jawary, 2019), nonlinear
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thin film flow problems (Al-Jawary, 2017) and
Fokker–Planck’s equations (Al-Jawary, Radhi, &
Ravnik, 2017). In addition, an alternative iterative
method called Banach Contraction Principle (BCP) by
Varsha Daftardar-Gejji and Sachin Bhalekar
(Daftardar-Gejji, & Bhalekar, 2009) was proposed. This
method considers fixed point theory as the main
source of metrics. The BCP has been used to solve
different types of differential and integral equations
(Latif, 2014) such as nonlinear thin film flows of non-
Newtonian fluids (Al-Jawary, Radhi & Ravnik, 2018).

The main objective of this article is to implement
the three iterative methods TAM, DJM and BCM, to
find an approximate solution of the wave equation.
The iterative methods proposed in this article can be
considered as alternatives to the established discret-
ization approaches, such as finite differences, finite
elements or the boundary-domain integral method.
In this study, we compare the results of the iterative
methods with the Boundary Domain Integral method
(Ravnik & Tibaut, 2018) to assess their accuracy.
There are also many analytical and numerical techni-
ques that have proven to be effective and efficient
in solving such problems (Bhatter, Mathur, Kumar &
Singh, 2020; Goswami, Singh & Kumar, 2019; Gupta,
Kumar & Singh, 2019; Kumar, Singh & Baleanu, 2018;
Kumar, Singh, Purohit & Swroop, 2019).

This article was organized as follows: In Section 2
the standard formula of the wave equation is pre-
sented. In Section 3 the basic concepts of the pro-
posed methods are shown. In Section 4 the
convergence of the proposed methods is examined.
In Section 5, the methods are demonstrated using
several test cases. The conclusions are presented in
the last section.

2. The formulation of the wave equations,
approximate and numerical methods

Wave phenomena and the wave equation are exten-
sively studied because of their importance for tech-
nical applications and for the understanding of many
natural phenomena. Linear and nonlinear wave equa-
tions are studied by engineers, physicists and mathe-
maticians (Biazar & Ghazvini, 2008; Keskin & Oturanc,
2010). In our study, we consider one-dimensional (1D),
two-dimensional (2D) and three-dimensional (3D) non-
linear wave equations, which can be expressed for the
3D problem by the following formula

utt ¼ Duðx, y, zÞ þ F uð Þ þ f x, y, z, tð Þ, a < x, y, z < b, t > 0,

(1)

with initial conditions

u x, y, z, 0ð Þ ¼ f1 x, y, zð Þ, ut x, y, z, 0ð Þ ¼ f2 x, y, zð Þ
and appropriate Dirichlet type boundary conditions F uð Þ
can be linear or nonlinear.

In this section, we introduce the basic concepts of
iterative methods TAM, DJM and BCM as well as the
discretization type method Boundary Domain
Integral (BDIM).

2.1. The basic idea of the TAM

Let us introduce the following nonlinear partial
differential equation (Al-Jawary, Azeez et al., 2018)

L u x, tð Þð Þ ¼ N u x, tð Þð Þ þ gðx, tÞ ¼ 0, (2)

with the boundary conditions

B u,
du
dt

� �
¼ 0,

where x is the independent variable, t is
time, u x, tð Þ is an unknown function, g x, tð Þ the
inhomogeneous term, L is a linear operator, N is a
nonlinear operator and Bð:Þ is the boundary oper-
ator. We begin by assuming that u0ðx, tÞ is an initial
guess to solve the problem uðx, tÞ and the solution
algorithm starts by solving the following initial value
problem

L u0 x, tð Þð Þ ¼ g x, tð Þ, with B u0,
du0
dt

� �
¼ 0: (3)

Next, an iterative procedure is set up to evaluate
subsequent approximations un x, tð Þ by solving the
following problem

L unþ1 x, tð Þð Þ ¼ N un x, tð Þð Þ þ g x, tð Þ, B unþ1,
dunþ1

dt

� �
¼ 0:

(4)

Then, the solution for Equation (4) is given by the
following limit u x, tð Þ ¼ limn!1 un:

2.2. The basic idea of the DJM

In this section, consider the following general func-
tional equation (Yaseen et al., 2012)

u x, tð Þ ¼ N u x, tð Þð Þ þ gðx, tÞ, (5)

where N is nonlinear operator and g is
known function.

A solution uðx, tÞ of Equation (5) is given by the
following series

u x, tð Þ ¼
X1
i¼0

ui: (6)

The nonlinear operator N can be decomposed as

N
X1
i¼0

ui

 !
¼ N u0ð Þ þ

X1
i¼0

N
Xi
j¼0

uj

0
@

1
A�N

Xi�1

j¼0

uj

0
@

1
A

8<
:

9=
;,

(7)

Considering Equations (6) and (7) we observe that
Equation (5) is equivalent to
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X1
i¼0

ui ¼ gþ N u0ð Þ þ
X1
i¼0

N
Xi
j¼0

uj

0
@

1
A�N

Xi�1

j¼0

uj

0
@

1
A

8<
:

9=
;:

(8)

We define the recurrence relation

u0ðx, tÞ ¼ gðx, tÞ, (9)

u1ðx, tÞ ¼ N u0 x, tð Þð Þ, (10)

umþ1 x, tð Þ ¼ N
Xm
i¼0

ui x, tð Þ
 !

� N
Xm�1

i¼0

ui x, tð Þ
 !

, m ¼ 1, 2, 3:::,

(11)

and

Xm�1

i¼0

uiðx, tÞ ¼ N
Xm
i¼0

uiðx, tÞ
 !

, m ¼ 1, 2, 3:::: (12)

Finally, the solution is recovered by taking the
following sum

u x, tð Þ ¼ g x, tð Þ þ
X1
i¼0

ui x, tð Þ: (13)

2.3. The basic idea of the BCM

Consider the nonlinear functional equation (Al-
Jawary, Radhi et al., 2018)

u x, tð Þ ¼ N u x, tð Þð Þ þ g x, tð Þ, (14)

where u x, tð Þ is an unknown function, N is nonlinear
operator and gðx, tÞ is a known function.

We define successive approximations as follows:

u0 x, tð Þ ¼ g x, tð Þ, (15)

u1 x, tð Þ ¼ u0 x, tð Þ þ N u0 x, tð Þð Þ, (16)

u2 x, tð Þ ¼ u0 x, tð Þ þ N u1 x, tð Þð Þ, (17)

unðx, tÞ ¼ u0ðx, tÞ þ N un�1ðx, tÞð Þ, n ¼ 1, 2, ::::

(18)

2.4. The basic idea of the BDIM

The BDIM (Ravnik & Tibaut, 2018) is based on the
fact that the fundamental solution of the problem is
used to derive an integral formulation of the prob-
lem. The main advantage of BDIM is the use of the
fundamental solution of the underlying physical
problem as a weighting function in the derived inte-
gral formulation of the governing equations.
Standard discretization methods such as FEM use
shape functions to facilitate the derivation of the
integral formulation and therefore do not take into
account the physics of the phenomena. BDIM uses
the fundamental solution and is able to detect phys-
ical effects on coarser meshes in comparison to FEM.
The wave equation (Equation (1)) has a diffusive
(Laplacian) operator and can be rewritten as follows

Du ¼ uxx þ uyy þ uzz ¼ f , (19)

where f is in general a nonlinear forcing term on
the right hand side. The second order derivative
over time is approximated using a second order
finite difference approximation utt ¼ u�1�2u�uþ1

Dt and
included into the forcing term. We assume that ini-
tial conditions and mixed Dirichlet/Neumann
boundary conditions are known. A time step Dt is
introduced. Such a Poisson type equation can be
written into integral form using a source point h
and the fundamental solution of the Laplace equa-
tion u�¼1/(4pjr�hj) as

c hð Þu hð Þ þ
ð
A
uru�dA ¼

ð
A
u�rudA ¼

ð
V
u�fdV (20)

The free coefficient c(h) is determined using the solid
angle at the source point position. To write a dis-
crete version of Equation (20), we have to interpolate
the unknown function u and its flux ru over bound-
ary and domain elements. In BDIM, the integral
equation contains the boundary flux and the domain
function. In our implementation of BDIM, we use
quadratic interpolation of the function and linear
interpolation of the boundary flux to achieve higher
accuracy for simulation problems with high gradients
in the solution. We use hexahedral domain elements
and quadratic boundary elements. Finally the dis-
crete version of Equation (20) can be written. A
Gaussian quadrature algorithm is used to calculate
the integrals.

A collocation scheme is used to write a system of
linear equations for the unknown values of function
and flux. The source point h is placed in boundary
and inner nodes. Since the boundary domain inte-
gral method requires domain discretization and since
the matrix of domain integrals is full, we avoid
excessive memory and computational time con-
sumption by using a domain decomposition tech-
nique. Domain decomposition results in a sparse
system of equations. In this work, we consider the
subdomains as domain mesh elements. Connection
between the subdomains is made by the fact that
the function and the flux must be continuous across
the boundaries of the subdomains. The described
procedure leads to a sparse and overdetermined sys-
tem of linear equations. We use a least squares
solver with diagonal preconditioning to find
the solution.

Since the problems considered in this article are
nonlinear, we have set up an iteration procedure
where we estimate the forcing using function values
in the previous iteration. An under-relaxation of 0.1
was used to achieve the convergence. Since the
problems considered are 1D, 2D and 3D and the
BDIM method is written in 3D, we also used appro-
priate (zero flux) boundary conditions on the
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sidewalls. Further details on BDIM can be found in
the work by Ravnik and Tibaut (2018) and referen-
ces therein.

3. The convergence of the proposed
iterative methods

In this section, we demonstrate the convergence of
the proposed methods for the linear and nonlinear
wave equation. We define new iterations as follows

v0 ¼ u0 x, tð Þ,
v1 ¼ F v0½ �,
v2 ¼ F v0 þ v1½ �,

���

:

vnþ1 ¼ F v0 þ v1 þ :::þ vn½ �:

(21)

where F is the operator defined by

F vk½ � ¼ Sk �
Xk�1

i¼0
vi x, tð Þ, k ¼ 1, 2, :::: (22)

The term Sk represents the solution of the following
problem

L vkðx, tÞð Þ þ g x, tð Þ þ N
Xk�1

i¼0
viðx, tÞ

� �
¼ 0, k ¼ 1, 2, :::,

(23)
using the given conditions of the problem. In this
way, we have u x, tð Þ ¼ limn!1 un x, tð Þ ¼P1

n¼0 vn: So,
the solution of the problem can be represented by
using Equations (19) and (20) in the following series

u x, tð Þ ¼
X1

i¼0
viðx, tÞ: (24)

According to this procedure, sufficient conditions for
convergence of our proposed iterative methods are
presented below. The main results are stated in the
following theorems.

Theorem 3.1. Let F be an operator defined in
Equation (22) from a Hilbert space H to H. The
solution in a series formula un x, tð Þ ¼Pn

i¼0 vi x, tð Þ
converges if 9 0 < r < 1 such that F½v0 þ v1þjj :::þ
viþ1�jj � r F½v0 þ v1 þ :::þ vi�j jj j (that is viþ1j jj j �
r vij jj j) 8i ¼ 0, 1, 2, ::::

This theorem is not only a special case of the
Banach fixed-point theory, but it is a sufficient condi-
tion to study the convergence.

Proof. See (Odibat, 2010). w

Theorem 3.2. Let the series solution u x,ð tÞ ¼P1
i¼0 vi x, tð Þ be convergent, then this series will represent

the exact solution of the current nonlinear problem.

Proof. See (Odibat, 2010). w

Theorem 3.3. Suppose that the series solutionP1
i¼0 vi xð Þ presented by Equation (24) converges to

the solution u x, tð Þ. If the truncated series
Pn

i¼0 vi x, tð Þ

is used as an approximation to the solution of the
current problem, then the maximum error Enðx, tÞ is
estimated by

En x, tð Þ � 1
1� r

rnþ1 v0j jj j: (25)

Proof. See (Odibat, 2010). w

Theorems 3.1 and 3.2 state that the solutions
obtained by one of the presented methods, i.e. the
relation (4) (for the TAM), the relation (11) (for the
DJM), the relation (20) (for the BCM) or (21)
converges to the exact solution under the con-
dition 9 0 < r < 1 such that F½v0 þ v1 þ :::þjj
viþ1�jj � r F v0 þ v1 þ :::þ vi½ �

�� ���� �� (that is viþ1j jj j �
r vij jj j) 8i ¼ 0, 1, 2, :::: . In other words, for each i, if
we define the parameters

bi ¼
viþ1j jj j
vij jj j , vij jj j 6¼ 0

0, vij jj j ¼ 0

8><
>: (26)

then the series solution
P1

i¼0 vi x, tð Þ converges to
the exact solution u x, tð Þ, when 0 � bi < 1, 8i ¼
0, 1, 2, :::: . Furthermore, as shown in Theorem 3.3,
the maximum truncation error is estimated to
be u x, tð Þ�Pn

i¼0 vi
�� ���� �� � 1

1�b b
nþ1 v0j jj j, where b ¼

maxfbi, i ¼ 0, 1, :::, ng:

4. Numerical examples

In this section, we proposed methods to solve sev-
eral examples of the 1D, 2D, 3D linear and nonlinear
wave equations.

Example 1. Consider the following 1D linear wave
equation given by Wazwaz (2010)

utt x, tð Þ ¼ uxx x, tð Þ � 2, (27)

with the following initial conditions:

u x, 0ð Þ ¼ x2, ut x, 0ð Þ ¼ sinx:

Solution of Example 1 by TAM:
We first begin by solving the following initial prob-
lem as follows:

L u x, tð Þð Þ ¼ utt x, tð Þ, N u x, tð Þð Þ ¼ uxx x, tð Þ, g x, tð Þ ¼ �2

(28)

The primary problem can be written as

L u0 x, tð Þð Þ ¼ �2, with u0 x, 0ð Þ ¼ x2, u0t x, 0ð Þ ¼ sinx

(29)

We can get the following problems from the
generalized general relationship

L unþ1 x, tð Þð Þ ¼ g x, tð Þ þ N un x, tð Þð Þ ¼ 0,

unþ1 x, 0ð Þ ¼ x2, u nþ1ð Þt x, 0ð Þ ¼ sinx:
(30)
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We have

u0tt x, tð Þ ¼ �2, (31)

by integrating both sides of Equation (31) twice
from 0 to t, with u0 x, 0ð Þ ¼ x2, u0t x, 0ð Þ ¼ sinx, we
obtain

u0 ¼ �t2 þ x2 þ t sinx,

In the same way, the rest of the iterations can be
evaluated, the first iteration being

u1tt x, tð Þ ¼ u0xx x, tð Þ � 2, with u1 x, 0ð Þ ¼ x2,

u1t x, 0ð Þ ¼ sinx:

(32)

Then, the solution for Equation (32) will be:

u1 ¼ t2 þ x2 þ t sinx � 1
6
t3sinx,

We find the second iteration u2ðx, tÞ by solving the
following problem:

u2tt x, tð Þ ¼ u1xx x, tð Þ � 2, with u2 x, 0ð Þ
¼ x2, u2t x, 0ð Þ ¼ sinx: (33)

Then, by solving Equation (33) we get

u2 ¼ x2 þ tsinx � 1
6
t3sinx þ 1

120
t5sinx:

Similarly, the third iteration u3 x, tð Þ can be obtained
by solving the following equation

u3tt x, tð Þ ¼ u2xx x, tð Þ � 2, with u3 x, 0ð Þ ¼ x2, u3t x, 0ð Þ
¼ sinx,

(34)

giving:

u3 ¼ x2 þ tsinx � 1
6
t3sinx þ 1

120
t5sinx � t7sinx

5040
:

In a similar way, we get subsequent iterations as

u4 ¼ x2 þ t sinx� 1
6
t3sin x þ 1

120
t5sinx

� t7sinx
5040

þ t9sinx
362880

,

u5 ¼ x2 þ t sinx� 1
6
t3sinx þ 1

120
t5sinx

� t7sinx
5040

þ t9sinx
362880

� t11sinx
39916800

:

Finally, by taking the limit

u x, tð Þ ¼ lim
n!1 un

u x, tð Þ ¼ x2 þ sinx t6
1
6
t3 þ 1

120
t5� t7

5040
þ t9

362880
� t11sinx
39916800

þ :::

� �
,

¼ x2 þ sinxsint:

We arrive at the exact solution of the problem.
Solution of Example 1 by the DJM:
Consider Equation 27ð Þ with initial condi-
tions: u x, 0ð Þ ¼ x2, ut x, 0ð Þ ¼ sinx:

We integrate both sides of Equation (27) twice
from 0 to t using the given initial condition and
obtain

u x, tð Þ ¼ �t2 þ x2 þ t sinx þ
ðt
0

ðt
0

@x, xuð Þdsds, (35)

By reducing the integration in Equation (35) from
double to single (Wazwaz, 2015), we obtain

u x, tð Þ ¼ �t2 þ x2 þ t sinx þ
ðt
0

t�sð Þ @xxuð Þds, (36)

then,

u0 ¼ �t2 þ x2 þ t sinx,

N unþ1ð Þ ¼
ðt
0

t�sð Þ @xxunð Þds, n 2 N [ 0f g:

The DJM algorithm gives the following iterations:

u0 ¼ �t2 þ x2 þ t sinx,

u1 ¼
ðt
0

t�sð Þ @xxu0ð Þds ¼ t2� 1
6
t3sinx,

u2 ¼
ðt
0

t�sð Þ @xxðu0þu1Þð Þds�u1 ¼ 1
120

t5sinx,

we find the rest of the iterations in the same way:���

:

u5 ¼ � t11sinx
39916800

Un ¼
Xn
i¼0

ui, n ¼ 1, 2, :::

U5 ¼ u1 þ u2 þ u3 þ u4 þ u5

U5 ¼ x2 þ t sinx� 1
6
t3sinx þ 1

120
t5sinx� t7sinx

5040
þ t9sinx
362880

is the same fifth iteration u5 of the TAM solution.
The exact solution can be obtained by

U x, tð Þ ¼
X1
i¼0

ui ¼ x2 þ sin x

t6
1
6
t3 þ 1

120
t5� t7

5040
þ t9

362880
þ :::

� �
,

¼ x2 þ sinxsint:

Solving Example 1 by the BCM:
We consider Equation 27ð Þ with initial conditions:
u x, 0ð Þ ¼ x2, ut x, 0ð Þ ¼ sinx and integrate both
sides of Equation (27) twice from 0 to t using the
given initial condition. We get

u x, tð Þ ¼ �t2 þ x2 þ t sinx þ
ðt
0

ðt
0

@x, xuð Þdsds: (37)

Reducing the integration in Equation (37) from dou-
ble to single (Wazwaz, 2015), we find
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u x, tð Þ ¼ �t2 þ x2 þ t sinx þ
ðt
0

t�sð Þ @xxuð Þds: (38)

Let u0 ¼ �t2 þ x2 þ t sinx and N un�1ð Þ

¼
ðt
0

t�sð Þ @xxun�1ð Þds, n 2 N: (39)

Applying the BCM, we obtain:

u0 ¼ �t2 þ x2 þ t sin x,

u1 ¼ u0 þ
ðt
0

t�sð Þ @xxu0ð Þds ¼ x2 þ t sin x� 1
6
t3sin x,

u2 ¼ u0 þ
ðt
0

t�sð Þ @xxu1ð Þds ¼ x2 þ tsin x� 1
6
t3sin x þ 1

120
t5sin x,

���

u5 ¼ x2 þ t sinx � 1
6 t

3sinx þ 1
120 t

5sinx � t7sinx
5040 þ t9sinx

362880
is the same fifth iteration u5 in the TAM.

The exact solution is obtained by taking a limit

u x, tð Þ ¼ lim
n!1 un:

u x, tð Þ ¼ x2 þ sinx

�
t þ� 1

6
t3 þ 1

120
t5 � t7

5040

þ t9

362880
� t11sinx
39916800

þ :::

�
,

¼ x2 þ sinxsint:

Example 2. Let us consider the 1D nonlinear wave
equation (Wazwaz, 2007)

utt ¼ uxx þ uþ u2 � xt � x2t2, (40)

with initial conditions:

u x, 0ð Þ ¼ 0, ut x, 0ð Þ ¼ x:

In order to solve Equation (40) by TAM with the ini-
tial conditions given, we have the following form

L uð Þ ¼ utt x, tð Þ,
N uð Þ ¼ uxx x, tð Þ þ u x, tð Þ þ u x, tð Þ2,

g x, tð Þ ¼ �xt�x2t2,

(41)

The initial problem is

L u0ð Þ ¼ �xt � x2t2 with u0 x, 0ð Þ ¼ 0, u0t x, 0ð Þ ¼ x:

(42)

We make use of the generalized iterative formula

L unþ1ð Þ þ N unð Þ ¼ g x, tð Þ, unþ1 x, 0ð Þ ¼ 0, uðnþ1Þt x, 0ð Þ
¼ x:

By solving Equation (42) we get

u0 ¼ tx � t3x
6

� t4x2

12
,

The first iteration u1 x, tð Þ can be evaluated
by solving

u1tt ¼ u0xx x, tð Þ þ u0 x, tð Þ þ u0 x, tð Þ2 � xt � x2t2,
with u1 x, 0ð Þ ¼ 0, u1t x, 0ð Þ ¼ x:
The solution is

u1 ¼ � t6

180
þ tx � t5x

120
� t6x2

72
þ t8x2

2016
� t7x3

252
þ t9x3

2592
þ t10x4

12960
,

Applying the same process for u2, we have

u2tt ¼ u1xx x, tð Þ þ u1 x, tð Þ þ u1 x, tð Þ2
� xt � x2t2 with u2 x, 0ð Þ ¼ 0, u2t x, 0ð Þ ¼ x:

By solving this problem, we get

u2 ¼ � t8

1680
þ t10

90720
þ t14

5896800
þ tx� t7x

5040
� 11t9x
22680

þ t11x
47520

þ t13x
1684800

� 11t8x2

20160
þ t10x2

181440
þ ::::

���
u5 ¼ � t8

1680
þ t10

90720
þ t14

5896800
þ tx� t7x

5040
� 11t9x
22680

þ t11x
47520

þ t13x
1684800

� 11t8x2

20160
þ t10x2

181440
þ 43t12x2

5702400

þ t14x2

1179360
� t16x2

43545600
� t9x3

2268
þ 5t11x3

399168
þ t13x3

673920

þ 13t15x3

76204800
� t17x3

63452160
� t10x4

11340
þ t12x4

155520
þ

...

(43)

This series converges to the exact solution when

u x, tð Þ ¼ lim
n!1 un x, tð Þ ¼ xt:

Solving Example 2 by the DJM:
Consider Equation (40) with the initial con-
ditions u x, 0ð Þ ¼ 0, ut x, 0ð Þ ¼ x: Integrating both
sides of Equation (40) twice from 0 to t, we get

u x, tð Þ ¼ tx � t3x
6

� t4x2

12
þ
ðt
0

ðt
0
@x, xuþ uþ u2dsds,

(44)

and reducing the integration in Equation (44) from
double to single (Wazwaz, 2015), we find

u x, tð Þ ¼ t2 � t4

6
þ x2 � t2x2 þ

ðt
0
t�sð Þð@x, xuþ uþ u2Þds:

(45)

Therefore, we have the following recurrence relation

u0 ¼ tx � t3x
6

� t4x2

12
,

N unþ1ð Þ ¼
ðt
0
t�sð Þð@x, xun þ un þ un2Þds, n 2 N [ 0f g:
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By applying the DJM, we find

u0 ¼ tx � t3x
6

� t4x2

12
,

u1 ¼ � t6

180
þ t3x

6
� t5x
120

þ t4x2

12
� t6x2

72
þ t8x2

2016

� t7x3

252
þ t9x3

2592
þ t10x4

12960
,

u2 ¼ t6

180
� t8

1680
þ t10

90720
þ t14

5896800
þ t5x
120

� t7x
5040

� 11t9x
22680

þ t11x
47520

þ t13x
1684800

þ t6x2

72
� t8x2

960
þ t10x2

181440
þ :::

...

u5 ¼ t12

3326400
þ 239t14

1452971520
� 6619t16

435891456000

� 29839t18

72754246656000
þ 60709t20

6911653432320000

� 68107471t22

46833363657400320000
þ ::::

Un ¼
Xn
i¼0

ui n ¼ 1, 2, 3, ::::

U5 ¼ u1þu2þu3 þ u4 þ u5,

U5 ¼ � t8

1680
þ t10

90720
þ t14

5896800
þ tx� t7x

5040

� 11t9x
22680

þ t11x
47520

þ t13x
1684800

� 11t8x2

20160

þ t10x2

181440
þ 43t12x2

5702400
þ t14x2

1179360

� t16x2

43545600
� t9x3

2268
þ 5t11x3

399168
þ t13x3

673920

þ 13t15x3

76204800
� t17x3

63452160
� t10x4

11340
þ t12x4

155520
þ ::::

This is the same as the approximate solution in
Equation (43) which converges to the exact solution

U x, tð Þ ¼
X1
i¼0

ui ¼ xt:

Solving Example 2 by the BCM:
Consider Equation (43) by following the same way as
in the DJM, we get Equation (45) So, let

u0 ¼ tx� t3x
6

� t4x2

12
,

N un�1ð Þ ¼
Ð t
0 t�sð Þð@x, xun�1 þ un�1 þ un�1

2Þds, n 2 N:

By applying the BCM, we obtain:

u0 ¼ tx � t3x
6

� t4x2

12
,

u1 ¼ � t6

180
þ tx � t5x

120
� t6x2

72
þ t8x2

2016
� t7x3

252
þ t9x3

2592
þ t10x4

12960
,

u2 ¼ � t8

1680
þ t10

90720
þ t14

5896800
þ tx � t7x

5040

� 11t9x
22680

þ t11x
47520

þ t13x
1684800

� 11t8x2

20160

þ t10x2

181440
þ ::::

...

u5 ¼ � t8

1680
þ t10

90720
þ t14

5896800
þ tx � t7x

5040
� 11t9x
22680

þ t11x
47520

þ t13x
1684800

� 11t8x2

20160
þ t10x2

181440

þ 43t12x2

5702400
þ t14x2

1179360
� t16x2

43545600
� t9x3

2268

þ 5t11x3

399168
þ t13x3

673920
þ 13t15x3

76204800
� t17x3

63452160

� t10x4

11340
þ t12x4

155520
þ :::

is the same of the approximate solution in Equation (43)
We see that the approximate solutions obtained from the
three proposed techniques are the same.

To prove the convergence analysis for the pro-
posed methods, we will use the process given in
Equations(21)–(24). The iterative scheme for Equation
(43) can be formulated as

v0 x, tð Þ ¼ u0 x, tð Þ ¼ tx � t3x
6

� t4x2

12
:

Applying the TAM, the operator F½vk� as defined in
Equation (22) with the term Sk which is the solution
for the following problem, it will be then

vktt x, tð Þ ¼
Xk�1

i¼0
vixx x, tð Þ

� �
þ

Xk�1

i¼0
vi x, tð Þ

� �
þ

Xk�1

i¼0
vi x, tð Þ

� �2
� xt�x2t2,

with

vk x, 0ð Þ ¼ 0, vkt x, 0ð Þ ¼ x k � 1:

Also, when applying the BCM, the Sk represents the
solution for the following problem,

vk ¼ v0 þ
Xk�1

i¼0
vixx x, tð Þ

� �
þ

Xk�1

i¼0
vi x, tð Þ

� �
þ

Xk�1

i¼0
vi x, tð Þ

� �2
, k � 1:

Iterative approximations can be used directly when
applying the DJM. Therefore, we have the following
terms
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v1 ¼ � t6

180
þ t3x

6
� t5x
120

þ t4x2

12
� t6x2

72
þ t8x2

2016

� t7x3

252
þ t9x3

2592
þ t10x4

12960
,

v2 ¼ t6

180
� t8

1680
þ t10

90720
þ t14

5896800
þ t5x
120

� t7x
5040

� 11t9x
22680

þ :::,

v3 ¼ t8

1680
� t10

33600
þ t12

5987520
� t14

11531520

þ 11t16

1415232000
þ 47t18

46637337600

� t20

28957824000
þ ::::

We use the above duplicates in computing the
values of bi for the equation as in Equation (26) we
obtain

b0 ¼
v1j jj j
v0j jj j ¼ 0:417171<1,

b1 ¼
v2j jj j
v1j jj j ¼ 0:190979<1,

b2 ¼
v3j jj j
v2j jj j ¼ 0:114691<1,

b3 ¼
v4j jj j
v3j jj j ¼ 0:0696193<1,

b4 ¼
v5j jj j
v4j jj j ¼ 0:0458687<1,

where, the bi values for i � 0 and 8ðx, tÞ : x 2 R,
0 < x � 1 are less than 1, so the proposed iterative
methods satisfy the convergence.

We calculate the absolute error Absrn ¼
N Abs w�un½ �� �

, to check the accuracy of the approxi-
mate solution ðunÞ, where w ¼ xt is the exact solu-
tion. Figures 1 and 2 show the 3D plotted graph of
the Absrn, for the approximate solution obtained by
the suggested iterative methods and BDIM. The
results show that BDIM accuracy grows with shorten-
ing of the time step. This kind of behaviour is
expected, since shorter time step enables better
time resolution and captures the solution develop-
ment more accurately. Similarly, by increasing the
number iterations for iterative methods, the errors
are decreasing and the precision of the approximate
solution increases.

Example 3. Consider 2D linear wave equation given
in equation (Qin, 2009)

utt � auxx þ buyy
	 
 ¼ 0, (46)

with the initial conditions : u x, y, 0ð Þ ¼ exþy ,
ut x, y, 0ð Þ ¼ � ffiffiffi

2
p

exþy:

Where a ¼ 1 and b ¼ 1 (Qin, 2009), Equation (46)
will be solved by the three proposed iterative
methods.

Solving Example 3 by the TAM:
By applying the TAM, we obtain the following iterations

u0 ¼ exþy �
ffiffiffi
2

p
exþyt:

u1 ¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3:

u2 ¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3

þ 1
6
exþyt4 � exþyt5

15
ffiffiffi
2

p ,

...

u5 ¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3

þ 1
6
exþyt4 � exþyt5

15
ffiffiffi
2

p þ 1
90

exþyt6 � exþyt7

315
ffiffiffi
2

p

þ exþyt8

2520
� exþyt9

11340
ffiffiffi
2

p þ exþyt10

113400

� exþyt11

623700
ffiffiffi
2

p ,

(47)

u x, y, tð Þ ¼ lim
n!1 un ¼ exþy �

ffiffiffi
2

p
exþyt þ exþyt2

� 1
3

ffiffiffi
2

p
exþyt3 þ ::::

Solving Example 3 by the DJM:
Consider Equation 46ð Þ with initial conditions :

u x, y, 0ð Þ ¼ exþy , ut x, y, 0ð Þ ¼ � ffiffiffi
2

p
exþy Log ðeÞ:

By applying the DJM, we get

u0 ¼ exþy �
ffiffiffi
2

p
exþyt,

u1 ¼ exþyt2 � 1
3

ffiffiffi
2

p
exþyt3,

u2 ¼ 1
6
exþyt4 � exþyt5

15
ffiffiffi
2

p ,

...

u5 ¼ exþyt10

113400
� exþyt11

623700
ffiffiffi
2

p ,

Un ¼
Xn
i¼0

ui n ¼ 1, 2, ::::

U5 ¼ u0 þ u1þu2þu3 þ u4 þ u5

¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2

� 1
3

ffiffiffi
2

p
exþyt3 þ 1

6
exþyt4 � exþyt5

15
ffiffiffi
2

p

þ 1
90

exþyt6 � exþyt7

315
ffiffiffi
2

p þ exþyt8

2520

� exþyt9

11340
ffiffiffi
2

p þ exþyt10

113400
� exþyt11

623700
ffiffiffi
2

p

is the same as the solution in Equation (47) we can
get the exact solution by

U x, y, tð Þ ¼
X1
i¼0

ui ¼ exþy� ffiffi
2

p
t:

Solving Example 3 by the BCM:
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Consider Equation (46) with initial condi-
tions u x,y,0ð Þ¼exþy , ut x,y,0ð Þ¼� ffiffiffi

2
p

exþy Log ðeÞ:
Applying the BCM, we obtain:

u0 ¼ exþy �
ffiffiffi
2

p
exþyt,

u1 ¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3,

u2 ¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3

þ 1
6
exþyt4 � exþyt5

15
ffiffiffi
2

p ,

...

u5 ¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3

þ 1
6
exþyt4 � exþyt5

15
ffiffiffi
2

p þ 1
90

exþyt6 � exþyt7

315
ffiffiffi
2

p

þ exþyt8

2520
� exþyt9

11340
ffiffiffi
2

p þ exþyt10

113400

� exþyt11

623700
ffiffiffi
2

p ,

u x, y, tð Þ ¼ lim
n!1 un ¼ exþy �

ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþyt3 þ ::::

This series converges to the exact solution

u x, y, tð Þ ¼ exþy� ffiffi
2

p
t

¼ exþy �
ffiffiffi
2

p
exþyt þ exþyt2 � 1

3

ffiffiffi
2

p
exþy

	 

t3

þ ::::

Also, is the same as the solution in Equation (47) and
the exact solution can be obtained by u x,ð
y, tÞ ¼ limn!1 un ¼ exþy� ffiffi

2
p

t:

Example 4. We take the following 2D nonlinear
wave equations

utt x, y, tð Þ ¼ uxx x, y, tð Þ þ uyy x, y, tð Þ � u x, y, tð Þ2 þ t2x2y2,

(48)

with initial conditions:

u x, y, 0ð Þ ¼ 0, ut x, y, 0ð Þ ¼ xy:

Equation (48) will be solved by the three iterative
methods with the initial conditions.

Solving Example 4 by the TAM:

u0 ¼ txy þ 1
12

t4x2y2,

u1 ¼ t6x2

180
þ txy þ t6y2

180
� 1
252

t7x3y3 � t10x4y4

12960
,

u2 ¼ t8

2520
� t14x4

5896800
þ txy � 11t9x3y

22680
� t14x2y2

2948400

� t12x4y2

142560
� 11t9xy3

22680
þ t15x5y3

4762800
� t14y4

5896800

� t12x2y4

142560
þ :::,

continuing in this way till n ¼ 4, we find

u4 ¼ t8

2520
� t14x4

5896800
þ txy � 11t9x3y

22680
� t14x2y2

2948400

� t12x4y2

142560
� 11t9xy3

22680
þ t15x5y3

4762800
� t14y4

5896800

� t12x2y4

142560
þ t10x4y4

11340
þ t18x6y4

356918400
þ t15x3y5

4762800

þ t13x5y5

1010880
þ t18x4y6

356918400
� t16x6y6

15240960

� t19x7y7

558472320
� t22x8y8

77598259200
þ :::

(49)

This series converges to the exact solution when
u x, y, tð Þ ¼ lim

n!1 un x, y, tð Þ ¼ x y t:

Solving Example 4 by the DJM:

u0 ¼ txy þ 1
12

t4x2y2,

u1 ¼ t6x2

180
þ t6y2

180
� 1
12

t4x2y2 � 1
252

t7x3y3 � t10x4y4

12960
,

u2 ¼ t8

2520
� t6x2

180
� t14x4

5896800
� 11t9x3y

22680
� t6y2

180
� t14x2y2

2948400

� t12x4y2

142560
� 11t9xy3

22680
þ 1
252

t7x3y3 þ ::::

Figure 1. Absolute errors obtained by the BDIM method using 17 equidistant nodes and three different time steps (0.1, 0.01
and 0.001) for text Example 2 are shown. In all three cases, we observe that the error decreases with time.
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Continue to till n ¼ 4

u4 ¼ 139t18

378928368000
� t38

5309215293981634560000

� t16x2

3891888000
þ t26x2

166617032400000
þ ::::

Un ¼
Xn
i¼0

ui n ¼ 1, 2, ::::

U4 ¼ u1 þ u2 þ u3 þ u4:

U4 ¼ t8

2520
� t14x4

5896800
þ txy � 11t9x3y

22680
� t14x2y2

2948400

� t12x4y2

142560
� 11t9xy3

22680
þ t15x5y3

4762800
� t14y4

5896800

� t12x2y4

142560
þ t10x4y4

11340
þ t18x6y4

356918400
þ t15x3y5

4762800

þ t13x5y5

1010880
þ t18x4y6

356918400
� t16x6y6

15240960

� t19x7y7

558472320
� t22x8y8

77598259200
þ ::::

This is the same as the approximate solution in
Equation (49) and converges to the exact solution

U ¼
X1
i¼0

ui ¼ xyt:

Solving Example 4 by the BCM:

u0 ¼ txy þ 1
12

t4x2y2,

u1 ¼ t6x2

180
þ txy þ t6y2

180
� 1
252

t7x3y3 � t10x4y4

12960
,

u2 ¼ t8

2520
� t14x4

5896800
þ txy � 11t9x3y

22680
� t14x2y2

2948400

� t12x4y2

142560
� 11t9xy3

22680
þ t15x5y3

4762800
� t14y4

5896800

� t12x2y4

142560
þ :::,

...

u4 ¼ t8

2520
� t14x4

5896800
þ txy � 11t9x3y

22680
� t14x2y2

2948400

� t12x4y2

142560
� 11t9xy3

22680
þ t15x5y3

4762800
� t14y4

5896800

� t12x2y4

142560
þ t10x4y4

11340
þ t18x6y4

356918400
þ t15x3y5

4762800

þ t13x5y5

1010880
þ t18x4y6

356918400
� t16x6y6

15240960

� t19x7y7

558472320
� t22x8y8

77598259200
þ :::

is the same approximate solution as in Equation 49ð Þ:
To prove the convergence analysis for the proposed

methods, we can find the bi values for the problem as
in Equation (48) Hence, the terms of the
series

P1
i¼0 vi x, y, tð Þ given in Equation (24) we have

b0 ¼
v1j jj j
v0j jj j ¼ 0:0863236 < 1,

b1 ¼
v2j jj j
v1j jj j ¼ 0:437467 < 1,

b2 ¼
v3j jj j
v2j jj j ¼ 0:110856 < 1,

b3 ¼
v4j jj j
v3j jj j ¼ 0:279038 < 1,

where, the bi values for i � 0 and 8ðx, yÞ 2 R2, 0 <

x, y, t � 1 are less than 1, so the proposed iterative
methods satisfy the convergence. In order to test
the accuracy of the approximate solution, we calcu-
late the Absrn where w ¼ xyt is the exact solution.
Figures 3 and 4 show the absolute error Absrn for
approximate solutions obtained by the iterative
methods and BDIM. It can be seen clearly that by
increasing the number of iterations the error of itera-
tive methods is reduced and the solution becomes
more accurate. The same conclusion can be drawn

Figure 2. We present the absolute error Absrn versus time and x for test Example 2 at n ¼ 1, 3, 4: Of the panes present
u1 x, tð Þ að Þ, u3 x, tð ÞðbÞ and u4 x, tð Þ ðcÞ, at the time instant t ¼ 0:1: Very good accuracy increase is observed when the number of
iterations n is increasing.
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for BDIM, when computational mesh density is
increased (Figure 3).

Example 5. Let us take the following 3D linear wave
equation given as (Wazwaz, 2010).

utt ¼ uxx þ uyy þ uzz þ sinx þ siny, (50)

with initial conditions:

u x, y, z, 0ð Þ ¼ sinx þ siny, ut x, y, z, 0ð Þ ¼ sinz:

Equation (50) will be solved by the three proposed
iterative methods
Solving Example 5 by the TAM:

u0 ¼ sinx þ 1
2
t2sinx þ siny þ 1

2
t2siny þ tsinz:

u1 ¼ sinx � 1
24

t4sinx þ siny � 1
24

t4siny þ tsinz

� 1
6
t3sinz,

u2 ¼ sinx þ 1
720

t6sinx þ siny þ 1
720

t6siny

þ tsinz � 1
6
t3sinz þ 1

120
t5sinz,

...

u5 ¼ sinx � t12sinx
479001600

þ siny � t12siny
479001600

þ tsinz

� 1
6
t3sinz þ 1

120
t5sinz � t7sinz

5040
þ t9sinz
362880

� t11sinz
39916800

:

(51)
u x, y, z, tð Þ ¼ lim

n!1 un

¼ sinx � t16sinx
20922789888000

þ siny

� t16siny
20922789888000

þ tsinz � 1
6
t3sinz

þ 1
120

t5sinz � t7sinz
5040

þ t9sinz
362880

� t11sinz
39916800

þ t13sinz
6227020800

� t15sinz
1307674368000

þ :::

¼ sinx þ siny þ sinzsint

is the exact solution.
Solving Example 5 by the DJM:

u0 ¼ sinx þ 1
2
t2sinx þ siny þ 1

2
t2siny þ tsinz,

Figure 3. The panels show absolute errors obtained by the BDIM solution of Example 4 using a time step of Dt ¼ 0:01 for
three different mesh discretizations – 52 nodes (a), 92 nodes (b) and 172 nodes(c). We observe a substantial improvement in
results accuracy, when a more fine computational grid is used. Results are shown at t ¼ 0:1:

Figure 4. (a–c):The absolute error Absrn of the solution of Example 4 at t ¼ 0:1 for n ¼ 1, 3, 4: The panels show
u1 x, y, tð Þ að Þ, u3 x, y, tð ÞðbÞ and u4 x, y, tð Þ ðcÞ: We observe an increase of accuracy as the number of iterations n increases.
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u1 ¼ � 1
2
t2sinx � 1

24
t4sinx � 1

2
t2siny � 1

24
t4siny

� 1
6
t3sinz,

u2 ¼ 1
24

t4sinx þ 1
720

t6sinx þ 1
24

t4siny þ 1
720

t6siny

þ 1
120

t5sinz,

���

u5 ¼ � t10sinx
3628800

� t12sinx
479001600

� t10siny
3628800

� t12siny
479001600

� t11sinz
39916800

:

Un ¼
Xn
i¼0

uin ¼ 1, 2, 3, 4, :::

U5 ¼ u1 þ u2 þ u3 þ u4 þ u5:

U5 ¼ sinx � t12sinx
479001600

þ siny � t12siny
479001600

þ tsinz

� 1
6
t3sinz þ 1

120
t5sinz � t7sinz

5040
þ t9sinz
362880

� t11sinz
39916800

,

is the same as the solution in Equation (51), the
exact solution can be obtained by

U ¼
X1
i¼0

ui ¼ sin x� t16 sin x
20922789888000

þ sin y

� t16 sin y
20922789888000

þ t sin z� 1
6
t3 sin z

þ 1
120

t5 sin z� t7 sin z
5040

þ t9 sin z
362880

� t11 sin z
39916800

þ t13 sin z
6227020800

� t15 sin z
1307674368000

þ � � � :
¼ sin x þ sin y þ sin z sin t:

Solving Example 5 by the BCM:

u0 ¼ sin x þ 1
2
t2 sin x þ sin x þ 1

2
t2 sin x þ t sin x,

u1 ¼ sin x� 1
24

t4 sin x þ sin y� 1
24

t4 sin y

þ t sin z� 1
6
t3 sin z,

u2 ¼ sin x þ 1
720

t6 sin x þ sin y þ 1
720

t6 sin y þ t sin z

� 1
6
t3 sin z þ 1

120
t5 sin z,

...

u5 ¼ sin x� t12 sin x
479001600

þ sin y� t12 sin y
479001600

þ t sin z� 1
6
t3 sin z þ 1

120
t5 sin z� t7 sin z

5040

þ t9 sin z
362880

� t11 sin z
39916800

,

is the same as the solution in Equation (51), the
exact solution can be found by

u x, y, z, tð Þ ¼ lim
n!1 un

¼ sin x� t16 sin x
20922789888000

þ sin y� t16 sin y
20922789888000

þ t sin z� 1
6
t3 sin z

þ 1
120

t5 sin z� t7 sin z
5040

þ t9 sin z
362880

� t11 sin z
39916800

þ t13 sin z
6227020800

� t15 sin z
1307674368000

þ :::,

¼ sin x þ sin y þ sin z sin t:

Example 6. Consider 3D nonlinear wave equation
given in equation

utt x, y, z, tð Þ ¼ uxx x, y, z, tð Þ þ uyy x, y, z, tð Þ
þ uzz x, y, z, tð Þ�u x, y, z, tð Þ2 þ t2x2y2z2,

(52)

with the initial conditions:

u x, y, z, 0ð Þ ¼ 0, ut x, y, z, 0ð Þ ¼ xyz:

Solving Example 6 by the TAM:

u0 ¼ txyz þ 1
12

t4x2y2z2,

u1 ¼ 1
180

t6x2y2 þ txyz þ 1
180

t6x2z2

þ 1
180

t6y2z2� 1
252

t7x3y3z3� t10x4y4z4

12960
,

u2¼ t8x2

2520
þ t8y2

2520
� t14x4y4

5896800
þ txyz�11t9x3y3z

22680
þ t8z2

2520

�t14x4y2z2

2948400
�t14x2y4z2

2948400
�t12x4y4z2

142560
�11t9x3yz3

22680

�11t9xy3z3

22680

...

u4¼ t10

37800
� t18x4

1943222400
� t18x2y2

971611200
� t16x4y2

88452000

� t18y4

1943222400
� t16x2y4

88452000
� t14x4y4

12972960

þ t24x6y4

4101342336000
þ ::::

(53)

This is the approximate solution, which converges to
the exact solution when

u x, y, z, tð Þ ¼ lim
n!1 un ¼ xyzt:

Solving Example 6 by the DJM:

u0 ¼ txyz þ 1
12

t4x2y2z2,
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u1 ¼ 1
180

t6x2y2 þ 1
180

t6x2z2 þ 1
180

t6y2z2� 1
12

t4x2y2z2

� 1
252

t7x3y3z3� t10x4y4z4

12960
,

u2 ¼ t8x2

2520
þ t8y2

2520
� 1
180

t6x2y2� t14x4y4

5896800
� 11t9x3y3z

22680

þ t8z2

2520
� 1
180

t6x2z2 þ ::::

...

u4 ¼ � t10

37800
� t22

660124080000
� t20x2

36921225600

þ 139t18x4

378928368000
þ t30x4

31952405923200000

� t38x8

5309215293981634560000
� t20y2

36921225600

� t18x2y2

5262894000
þ :::

Un ¼
Xn
i¼0

ui n ¼ 1, 2, 3, ::::

U4 ¼ u1 þ u2 þ u3 þ u4 ¼ t10

37800
� t18x4

1943222400

� t18x2y2

971611200
� t16x4y2

88452000
� t18y4

1943222400

� t16x2y4

88452000
� t14x4y4

12972960
þ t24x6y4

4101342336000
þ ::::

This is the same as the approximate solution in Equation
(53) and converges to the exact solution when

U ¼
X1
i¼0

ui ¼ xyzt:

Solving Example 6 by the BCM:

u0 ¼ txyz þ 1
12

t4x2y2z2,

u1 ¼ 1
180

t6x2y2 þ txyz þ 1
180

t6x2z2 þ 1
180

t6y2z2

� 1
252

t7x3y3z3� t10x4y4z4

12960
,

u2 ¼ t8x2

2520
þ t8y2

2520
� t14x4y4

5896800
þ txyz� 11t9x3y3z

22680
þ t8z2

2520

� t14x4y2z2

2948400
� t14x2y4z2

2948400
� t12x4y4z2

142560
� 11t9x3yz3

22680

� 11t9xy3z3

22680
þ ::::

u4 ¼ t10

37800
� t18x4

1943222400
� t18x2y2

971611200
� t16x4y2

88452000

� t18y4

1943222400
� t16x2y4

88452000
� t14x4y4

12972960

þ t24x6y4

4101342336000
þ ::::

This is the same as the approximate solution in
Equation (53) and converges to the exact solution.

To prove the state of convergence we find values
of bi for the problem : Hence, the terms of the

series
P1

i¼0 viðx, y, z, tÞ given in Equation (24) we get

b0 ¼
v1
v0

¼ 7:79581� 10�8<1,

b1 ¼
v2
v1

¼ 0:7341<1,

b2 ¼
v3
v2

¼ 0:237846<1,

b3 ¼
v4
v3

¼ 0:0718699<1,

where, the bi values for i � 0 and 8ðx, y, z, tÞ :
x, y, z 2 R3, 0<x, y, z, t � 1 are less than 1, so the
proposed iterative methods satisfy the convergence.

To examine the accuracy of the approximate solu-
tions for this example, we to calculate the absolute
error of the approximate solution, where the exact
solution is u ¼ txyz: The results are presented in
Figures 5 and 6. The Figures show the absolute
error Absrn for the approximate solution obtained by
the proposed iterative methods and BDIM. We note
that by increasing the number of iterations, the error
decreases and the accuracy of the approximate solu-
tions is increased. Shortening of the time step has a
similar effect for BDIM.

In order to study the accuracy of the proposed
methods, we measure the difference between
the exact and numerical solution in terms of
the RMS norm. The RMS norm is

defined as RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðei�niÞ2P
ðeiÞ2

r
:

Here ei is the exact solution in node i and ni is
the numerical solution at the same node at a certain
time. This allows us to display RMS time diagrams
for Examples 2, 4 and 6 in Figures 7–9. Iterative
methods BCM, DJM and TAM have similar RMS dif-
ference properties. The accuracy is very high at the
beginning of the simulation. For long periods of
time the accuracy deteriorates. Since these
approaches lead to an expansion of the solution if
we increase the time, we actually go further away
from the initial point. Therefore, the accuracy
decreases as with the Taylor expansion. At the
beginning of the simulation, when the accuracy is
better than 10�15, we notice some oscillations in the
accuracy of the TAM method. The accuracy of the
BDIM method is not dependent on time, but is
defined by the mesh size and the length of the time
steps. The best results are obtained with a short
time step and a dense mesh. Because of these prop-
erties, the BDIM is more accurate than iterative
methods for long periods of time.

It is worth mentioning that the main advantage
of using TAM, DJM and BCM compared to other
numerical methods is that no linearization or discret-
ization is required, thus avoiding the large computa-
tional effort and rounding errors. The
implementation does not include a restrictive
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assumption for the nonlinear terms and it overcomes
the difficulties encountered in the calculation of
Adomian polynomials to handle the nonlinear terms,
which is a disadvantage of the Adomian
Decomposition Method (ADM). It does not require
calculation of the Lagrange multiplier in Variational
Iteration Method (VIM), where the terms of the
sequence become complex after several iterations,
so that the analytical evaluation of the terms
becomes very difficult or impossible. There is also no
need to construct a homotopy in Homotopy
Perturbation Method and solve the corresponding
algebraic equations.

5. Summary and conclusion

In this work, we developed three iterative methods
TAM, DJM and BCM and a discretization-based BDIM
method to find approximate solutions for the wave
equation in 1D, 2D and 3D. The iterative methods
provide the solutions in the form of a series. The
accuracy of the solutions has been investigated by
absolute error diagrams and the study of RMS error
propagation in time. The convergence of the

methods was investigated and the efficiency and
accuracy was demonstrated.

We have shown that the accuracy of TAM, DJM
and BCM increases with the number of iterations
used and decreases over time when a constant
number of iterations is used. From this we conclude
that the number of iterations chosen must corres-
pond to the time when the solution is needed. We
have compared the accuracy of the iterative meth-
ods with BDIM, which is a domain-based method.
We could achieve better accuracy with iterative
methods as long as the number of iterations was
large enough. On the other hand, we have
observed that the accuracy of BDIM depends
strongly on the grid discretization and the time
step. The choice of a fine grid and a short time
step leads to a better accuracy, but results in an
increased computational effort.

Disclosure statement

No potential conflict of interest was reported by
the authors.

Figure 5. Absolute errors of the solution of Example 4 obtained by the BDIM using 173 equidistant nodes and three different
time steps (0.1, 0.01 and 0.001). Results are shown on the z ¼ 0:1 plane at t ¼ 0:1: We observe that the error decreases
with shortening of the time step.

Figure 6. Absolute error Absrn of the solution of Example 4 obtained by the iterative methods for different number of itera-
tions n ¼ 1, 3, 4: The panels show u1 x, y, z, tð Þ að Þ, u3 x, y, z, tð ÞðbÞ and u4 x, y, z, tð Þ (c) at time t ¼ 0:1 and z ¼ 0:1: We
observe the increase of accuracy when the number of iterations is increased.
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Figure 7. Plots of the RMS difference versus time for the solution of Example 2. Top row: dependence of mesh density
(BDIM) and the number of iterations (BCM, DJM and TAM). Bottom row: dependence of time step size.

Figure 8. Plots of the RMS difference versus time for the solution of Example 4. Top row: dependence of mesh density
(BDIM) and the number of iterations (BCM, DJM and TAM). Bottom row: dependence of time step size.
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