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A B S T R A C T

The paper reports on development of a Boundary Element Method (BEM) based two phase dispersed flow
model, that allows an accurate and efficient heat and mass transfer coupling by using a moving point source
model to account for particle–fluid interaction. The two-way coupling model highlights the efficient use of the
elliptic fundamental solution and the Dirac delta distribution properties to accurately evaluate the heat and
mass point particle source impact on the continuous phase, solved by the Boundary Domain Integral Method
(BDIM). In addition to the BDIM model of the particle–fluid heat and mass transfer interaction, the two-phase
flow case under consideration is extended to the case of porous spherical particle drying with internal moving
drying front, which is solved by the Boundary Element Method. As the two-phase flow is considered to be
dilute, the particle–fluid momentum exchange is covered by a one-way coupling algorithm, with Lagrangian
particle tracking used for determination of particle positions and velocities in the flow. Two computational
cases are presented, where 1000 and 10000 particles are dried in a stream of hot air. Comparison between the
obtained drying times for the cases of the one-way and the two-way heat and mass transfer coupling results
shows, that the developed two-way coupling model accurately captures the effect of moisture accumulation
and temperature decrease in the fluid phase, leading to realistic computations of drying rates of particles in
the flow.
1. Introduction

In the process and environmental technology multiphase flows are
very common, especially in the form of dispersed two-phase flows, as
dispersion of particles ensures a high surface area of the particulate
phase, leading to significant increase of heat and mass transfer rates
between the phases. This is especially true in the case of drying ap-
plications, which are considered here as an application example, and
cover spray dryers, fluid bed dryers, pneumatic dryers, among others.

Flows with particles can be dense or dilute. Modeling of dense
particle two-phase flows is usually done in the Eulerian frame of refer-
ence for both phases, with governing equations for both phases derived
based on volume averaging technique [1]. On the other hand, if we
focus on dispersed flows with low mass loadings, as occur for example
in spray or pneumatic dryers, the most appropriate approach is through
the Euler–Lagrange description, with Eulerian frame used for the con-
tinuous phase and Lagrangian frame for the dispersed phase computa-
tions. The Euler–Lagrange method can also be used for dense dispersed
flows, however it is usually computationally too costly, because of the
huge number of particles that have to be resolved [2].

In the Euler–Lagrange approach of the two-phase flow modeling, the
particles‘ motion is computed in the Lagrangian frame by the direct use
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of Newton’s laws, with momentum and energy transfer models taking
into account the particle–fluid interactions [3]. The computationally
most affordable approach is description of a particle as a rigid sphere,
that interacts with the fluid phase, but at the same time also occupies
the same volume as the fluid. As the particle size is in general much
smaller than the elements of the computational grid, used for the
numerical solution of the Eulerian part of the problem, the interaction
of both phases can be modeled by a point source approach [3]. The re-
sulting Lagrangian particle tracking has a superior spatial accuracy, and
allows different phenomena to be modeled and computed accurately,
e.g. heat and mass transfer from the particles or accurate incorporation
of drag and lift forces. In general, the transport phenomena between the
phases influence the state of both phases, however, if the impact of one
phase on the other is weak, it can be neglected in the computational
model, leading to so called one-way coupling between the phases.
Conversely, the mutual influence on both phases is covered by the
two-way coupling algorithms.

Solving the one-way coupled problem generally requires the avail-
ability of the velocity, temperature and moisture concentration in the
fluid phase at the current location of the particle, which is then used
in computation of the particle drying kinetics. In drying applications,
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the moisture partial pressure difference between the fluid phase and
the particle presents the driving force for moisture evaporation, which
leads to a change in moisture concentration field in the fluid phase. As
this change alters the mass transfer driving force, a two-way coupling
has to be implemented in order not to loose accuracy of computed
drying rates of particles. This calls for an accurate representation of the
heat and mass flows from the particles at the level of the fluid, which
leads to a correct distribution of the flows to the computational nodes.
The particles‘ feedback to the continuous phase is solved using different
mathematical approximations. Verhnjak et al. [4] published a novel
computational approach for the two-way coupled simulation of heat
transfer from point sources that can be used in Subdomain Boundary
Domain Integral Method, used for solution of the continuous phase.
The approach is based on the point particle approximation and takes
advantage of the Dirac delta distribution properties when mapping the
dispersed phase impact onto the fluid phase. The mapping is extremely
accurate except for the case of particle’s position in close proximity
of the mesh nodes, where the Dirac delta distribution is singular. The
problem was fixed with the proposed hybrid BEM-PIC (Particle-In-Cell)
model, that is used in these regions, which typically occupy only 1%–
3% of the computational domain. As the BEM based point particle
mapping outperforms other traditional models [5,6] in the 97%–99%
of the computational domain, the model is extended here to the drying
case, i.e. particles (i.e. sources) moving in the flow and exchanging heat
and mass with the fluid phase.

In general, the drying process is a two-way interaction of mo-
mentum, heat and mass transfer between the dispersed particles and
the drying fluid. In drying of dispersed phase, one-way coupling can
used to account for the impact of the drying fluid momentum on the
dispersed phase [7]. In the case of drying, two-way coupling is needed,
as the conditions in the drying fluid directly influence the heat and
mass exchange with the particles, which in turn directly affect the
local conditions within the drying air. The two-way coupling leads to
more accurate calculation of the particle drying time [8], which is the
most important engineering parameter in drying [9,10]. Although the
present work focuses on the development of a point source model for
the drying fluid, computation of particle kinetics has to be included as
well. Here, we refer to the work of Sagadin and Hribersek [11] where a
multistage spray drying model of zeolite 4 A particles was developed.
Additionally, Gomboc et al. [12] published a paper that extends the
model in [11] with the heat transfer inside the particle solved using
BEM, by transforming a 3D problem into a quasi 1D case, with the time
dependent solution leading to calculation of energy and mass sources
for the use in the two-way coupling numerical simulation of the drying
process.

The paper is organized as follows. Section 2 describes the mathemat-
ical model of the two-way coupling model for heat and mass transfer
between the continuous phase and the dispersed phase. A description
of the BEM implementation in developing the final numerical model
is presented in Section 3. Computational examples are presented in
Section 4, while the results and discussion are presented in Section 5.
The paper ends with the Conclusion and Acknowledgments.

2. Mathematical model

The conjugate heat and mass transfer model between the continuous
and dispersed phase requires separate computation of transport phe-
nomena at the continuous (fluid) level as well as at the particle level.
As the paper is focused on the heat and mass transfer equations for the
fluid flow and contribution of the drying particles to this flow, in the
following, the derivation of Boundary Element based model of moving
point sources in the fluid phase will be presented, with the extension
to the Boundary Element based model of drying at the particle (point
source) level.
2.1. Heat and mass transfer in the continuous phase

In order to accurately compute the drying rates for the moving
particles, temperature as well as moisture concentration values at
locations of particles have to be known, which requires the solution
of Navier–Stokes equations with heat and mass transfer included in the
system of equations. The BEM based numerical model for the solution
of Navier–Stokes equations for the fluid flow simulation is described
in more detail in the work of Ravnik et al. [13,14], with extension to
solving the heat and mass conservation laws using BEM. Therefore, in
this section, we will be focusing only on the numerical solution of heat
and mass conservation equations, which will include the source terms
arising from the drying of particles.

As described, the drying process includes the heat and mass transfer
between the dispersed particles and the drying air. Heat from the drying
air transfers to the dispersed particles, where drying takes place, induc-
ing a heat sink in the drying air. Conversely, the evaporated moisture
flows from the particles to the drying air, inducing the moisture source
in the fluid phase. Consequently, a change in local drying conditions
give rise to differences in drying kinetics of the particles [12].

Heat transfer in the drying air can be accounted for by the conser-
vation of energy as:

𝜌∗𝑐∗𝑝
𝜕𝑇 ∗

𝜕𝑡∗
+
(

𝑣∗ ⋅ ∇⃗
)

𝑇 ∗ = 𝜆∗∇⃗2𝑇 ∗ + 𝐼∗𝑇 , (1)

where 𝜌∗ represent density, 𝑐∗𝑝 represent specific heat, 𝑇 ∗ temperature,
𝑡∗ time, 𝑣∗ velocity, 𝜆∗ thermal conductivity, ∇⃗ represents the nabla
operator and 𝐼∗𝑇 heat sink. ∗ represents the dimensional form, and has
been introduced due to the clear writing of the non-dimensional form
below.

Mass transfer in the drying air can be accounted for by the conser-
vation of mass of species as:
𝜕𝐶∗

𝜕𝑡∗
+
(

𝑣∗ ⃗⋅∇
)

𝐶∗ = ∇⃗ ⋅
(

𝐷∗∇⃗𝐶∗
)

+ 𝐼∗𝐶 , (2)

here 𝐶∗ represents moisture concentration, 𝐷∗ the moisture diffusion
oefficient in air and 𝐼∗𝐶 the moisture source.

In spray drying applications the drying particle size is between
50 μm and 300 μm [15]. In that case, when we deal with small particles
which are usually much smaller than the computational mesh element
size and their Stokes number values are much smaller than one, parti-
cles can be approximated as points and their interaction with the fluid
phase as a point source type interaction. The heat sink can be expressed
as [4]:

𝐼∗𝑇 =
∑

𝑙
𝑄∗

𝑇 ,𝑙𝛿
(

𝑟∗, 𝑝∗𝑙
)

, (3)

where 𝑄∗
𝑇 ,𝑙 represents the heat power of a single particle, 𝛿 is the

irac delta distribution, 𝑟∗ represents the arbitrary position vector, 𝑝∗𝑙
epresents the particle position, and summation the sum of all particles.
he Dirac delta distribution gives a mathematically exact expression for
he point-wise property of the particles. Similar to the heat source the
ass source can be expressed as:

∗
𝐶 =

∑

𝑙
𝑄∗

𝐶,𝑙𝛿
(

𝑟∗ − 𝑝∗𝑙
)

, (4)

here 𝑄∗
𝐶,𝑙 represents the mass power of the individual particle 𝑙.

Both governing equations Eqs. (1) and (2) are cast into their non-
imensional forms using the following definitions:

=
𝑣∗0𝑡

∗

𝐿∗ , 𝜆 = 𝜆∗

𝜆∗0
, 𝜌 =

𝜌∗

𝜌∗0
, 𝐶 = 𝐶∗

𝐶∗
0
, 𝐼𝑇 =

𝐼∗𝑇
𝐼∗𝑇0

,

𝑇 =
𝑇 ∗ − 𝑇 ∗

0
𝛥𝑇 ∗ , 𝑣 = 𝑣∗

𝑣∗0
, 𝑐𝑝 =

𝑐∗𝑝
𝑐∗𝑝0

, 𝐼𝐶 =
𝐼∗𝐶
𝐼∗𝐶0

, (5)

where 𝑣∗0, 𝜆∗0, 𝜌∗0, 𝑐∗𝑝0, 𝑇 ∗
0 , 𝐶∗

0 , 𝐿∗, 𝐼∗𝑇 0 and 𝐼∗𝐶0 represent their
characteristic counterparts.
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The non-dimensional forms of Eqs. (1) and (2) together with the
heat and mass sink definitions (3) and (4) now read as:
𝜕𝑇
𝜕𝑡

+
(

𝑣 ⋅ ∇⃗
)

𝑇 = 1
𝑅𝑒𝑃𝑟

∇2𝑇 +
∑

𝑙
𝜗𝑇 ,𝑙𝛿

(

𝑟 − 𝑝𝑙
)

, (6)

where the heat source is written as 𝜗𝑇 = 𝐼∗0𝐿
∗∕(𝛥𝑇 ∗𝑣∗0𝜌

∗
0𝑐

∗
0 ), with 𝑅𝑒

nd 𝑃𝑟 representing the Reynolds and Prandtl numbers, and:
𝜕𝐶
𝜕𝑡

+
(

𝑣 ⋅ ∇⃗
)

𝐶 = 1
𝑆𝑐𝑅𝑒

∇2𝐶 +
∑

𝑙
𝜗𝐶,𝑙𝛿

(

𝑟 − 𝑝𝑙
)

, (7)

here the mass source is written as 𝜗𝐶 = 𝐼∗𝐶0𝐿
∗∕(𝐶∗

0 𝑣
∗
0) and 𝑆𝑐

epresent the Schmidt number.
The point source model is based on the properties of the Dirac delta

istribution, which is singular at the exact location of the particle.
enerally, all the numerical approaches approximate the Diract delta
istribution by means of some smooth function, which resembles the
irac delta properties more or less accurately [16,17]. In the case of
oundary Element Methods, the point source in an integral equation
an be evaluated analytically, if the field point does not coincide with
he source point. However, in the case when the particle (i.e. the field
oint) is at the source point position or very close to it, numerical
roblems occur. The hybrid methodology, introduced by Verhnjak
t al. [4], solves this problem by implementing an approximation of the
irac delta distribution when the field point is in close vicinity of the

ource point, which occurs only in a small fraction of the computational
omain, typically in the range of 1%–3% Verhnjak et al. [4]. This
ybrid methodology is based on the local application of the particle-
n-cell (PIC) method [5], and can be expressed for the heat sink as:

𝑇 =
∑

𝑙

𝜗𝑇 ,𝑙
𝑉𝑐

, (8)

here 𝑉𝑐 represents a small volume of the entire domain. Similarly, we
xpress the mass source as:

𝐶 =
∑

𝑙

𝜗𝐶,𝑙

𝑉𝑐
. (9)

n the case when the Dirac delta distribution is singular or near-
ingular, Eqs. (6) and (7) can be rewritten to:

𝜕𝑇
𝜕𝑡

+
(

𝑣 ⋅ ∇⃗
)

𝑇 = 1
𝑅𝑒𝑃𝑟

∇2𝑇 +
∑

𝑙

𝜗𝑇 ,𝑙
𝑉𝑐

, (10)

𝜕𝐶
𝜕𝑡

+
(

𝑣 ⋅ ∇⃗
)

𝐶 = 1
𝑆𝑐𝑅𝑒

∇2𝐶 +
∑

𝑙

𝜗𝐶,𝑙

𝑉𝑐
, (11)

presenting the final form used in BEM discretization process. A critical
non-dimensional distance of 0.01 was used to switch between the Dirac
delta distribution approach and the macroscopic PIC approach [4].

As the particles are tracked in the fluid flow, the latter has to
be resolved as well. As stated before, the dilute two-phase flow case
is considered here, where one-way coupling is implemented. Laminar
viscous flow was simulated using the code developed in [13]. The
code solves the velocity–vorticity formulation of the Navier–Stokes
equations using the Boundary-Domain Integral Method. A combination
of sub-domain and single domain technique is used and incompressible
viscous Newtonian fluid with constant material properties is consid-
ered. Vorticity �⃗� is defined as the curl of the velocity �⃗� = ∇⃗ × 𝑣. Both
velocity and vorticity fields are divergence free. The viscous fluid flow
is governed by the kinematics equation

∇2𝑣 + ∇⃗ × �⃗� = 0, (12)

which links the velocity and vorticity fields for every point in space and
time. The kinetic aspect of the fluid flow is governed by the vorticity
transport equation [4], written in the following non-dimensional form:
𝜕�⃗�
𝜕𝑡

+ (𝑣 ⋅ ∇⃗)�⃗� = (�⃗� ⋅ ∇⃗)𝑣 + 1
𝑅𝑒

∇2�⃗�. (13)

umerical solution of the fluid flow problem is reported in [13] and
hall not be repeated here.
.2. Heat and mass transfer at the particle level

As the model problem at the particle level the three-stage porous
article drying model is considered. As the first and the third drying
tages are described by ordinary differential equations with respect
nly to time, which are solved using standard Euler or Runge–Kutta
ethods [11], here we will concentrate on just the second stage, which

s governed by the heat transfer inside the particle and the Stefan
iffusion through the dried part of the particle accounting for the mass
ransfer, presenting the computationally most difficult part as well as
ccounting for the majority of the overall drying time.

During the second stage, drying takes place inside the particle,
here the moisture is evaporated at the drying front (i.e. the interface
etween the dried and wet part of the particle) and transferred to the
uter surface of the particle by means of the Stefan diffusion [9,11].
herefore, the particle can be divided into two regions during the
econd stage — the dry and the wet regions, or the dry crust and the wet
ore, respectively. During the drying stage, the drying front is moving
s the wet core decreases in size until there is no wet region inside the
article. As the evaporation intensity at the drying front depends on
he temperature, to solve the second stage, we have to solve the heat
ransfer inside the particle. Heat transfer inside the wet core and the
ry crust can be described by the conservation of energy as:

∗
𝑜𝑐

∗
𝑝,𝑜

𝜕𝑇 ∗
𝑜

𝜕𝑡∗
= ∇⃗ ⋅

(

𝜆∗𝑜 ∇⃗𝑇
∗
𝑜

)

, (14)

here index 𝑜 = {𝑤, 𝑑} denotes wet or dry region.
To solve the unsteady heat transfer through the dry and wet regions,

e also have to impose boundary and interface conditions. Due to the
article spherical shape, we introduce a spherical coordinate system

⃗ = 𝑟 (𝑟, 𝜑, 𝜃) for simpler annotation. Heating or cooling of a particle at
he outer surface is described with Robin boundary condition as:
∗ = −𝜆∗𝑑∇⃗𝑇

∗
𝑑 ⋅ 𝑛 = 𝛼∗(𝑇 ∗

𝑔 − 𝑇 ∗
𝑑 ),

∗ = 𝑅∗
𝑝 , 0 ≤ 𝜑 ≤ 2𝜋, −𝜋 ≤ 𝜃 ≤ 𝜋, (15)

here 𝑞∗ represents the heat flux, 𝑇 ∗
𝑑 the temperature of the dry crust,

∗
𝑔 is the temperature of the drying gas far away from the particle, 𝛼∗
s the heat transfer coefficient, 𝜆∗𝑑 the effective heat conductivity of the
ry region, 𝑛 is a normal vector of the surface, and 𝑅∗

𝑝 the radius of the
particle. At the interface, we impose a compatibility condition for the
temperature as:

𝑇 ∗
𝑤 = 𝑇 ∗

𝑑 , 𝑟∗ = 𝑅∗
𝑖 , 0 ≤ 𝜑 ≤ 2𝜋, −𝜋 ≤ 𝜃 ≤ 𝜋, (16)

where 𝑇 ∗
𝑤 represents the temperature of the wet core, 𝑅∗

𝑖 is the interface
radius, and equilibrium conditions, where evaporation of the moisture
is included, as:

𝜆∗𝑑
𝜕𝑇 ∗

𝑑
𝜕𝑟∗

= 𝜆∗𝑤
𝜕𝑇 ∗

𝑤
𝜕𝑟∗

+ ℎ∗
�̇�∗
𝑓,𝑖

𝐴∗
𝑖

𝑟∗ = 𝑅∗
𝑖 , 0 ≤ 𝜑 ≤ 2𝜋, −𝜋 ≤ 𝜃 ≤ 𝜋 (17)

where 𝜆∗𝑤 represents the effective thermal conductivity of the wet core,
ℎ∗ is the specific heat of evaporation, 𝐴∗

𝑖 is the interface surface area,
and �̇�∗

𝑓,𝑖 the fluid vapor mass flow rate at the interface. Because the
boundary conditions on the particle surface (15) are uniform in all
directions and the particle is treated as homogeneous, the drying rate
will also be the same in all directions.

As stated, mass transfer of vapor from the drying front to the particle
surface through the dried crust is solved by using the solution of the
Stefan diffusion through a porous material under the assumption of
cylindrical inner channels, described by the equation [18]

̇ ∗𝑓,𝑖 = −
8𝜋𝜀𝛽𝐷∗

𝑓,𝑑𝑀
∗
𝑓 𝑝

∗
𝑔

𝜅∗
(

�̄� ∗
𝑑 + �̄� ∗

𝑤
)

𝑅∗
𝑝𝑅

∗
𝑖

𝑅∗
𝑝 − 𝑅∗

𝑖
𝑙𝑛

⎡

⎢

⎢

⎢

⎢

⎣

𝑝∗𝑔 − 𝑝∗𝑓,𝑖

𝑝∗𝑔 −
(

𝜅∗

4𝜋𝑀∗
𝑓 𝛼

∗
𝑚𝑅∗2

𝑝
�̇�∗
𝑓,𝑖 +

𝑝∗𝑓,∞
𝑇 ∗
𝑔

)

𝑇 ∗
𝑖

⎤

⎥

⎥

⎥

⎥

⎦

,

(18)
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where 𝜀 represents the porosity of the particle, 𝛽 the power coefficient,
𝑀∗

𝑓 the fluid molecular weight, 𝜅∗ the universal gas constant, 𝑝∗𝑔 the
drying gas pressure, 𝐷∗

𝑓,𝑑 the vapor diffusion coefficient in the dry
crust, �̄� ∗

𝑑 and �̄� ∗
𝑤 are the average temperature of the dry crust and

he wet core, respectively, 𝑇 ∗
𝑖 represents the temperature at the wet

ore-dry crust interface, 𝑝∗𝑓,𝑖 is the saturation pressure of vapor on the
nterface while 𝑝∗𝑓,∞ represent the partial pressure of the vapor in the
rying gas and 𝛼∗𝑚 the mass transfer coefficient. The saturation pressure

of the vapor depends on the temperature and is calculated from the
model [11]:

𝑝∗𝑓,𝑖 =
𝑒
𝑎1+𝑎2𝑇 ∗

𝑖
𝑎3
𝑇 ∗𝑖

𝑇 ∗𝑎4
𝑖

, (19)

while other parameters in the Eq. (18) are kept constant as well as the
coefficients. Variables 𝑎1, 𝑎2, 𝑎3, and 𝑎4 in the Eq. (19) are constants.
As can be seen, Eq. (18) for calculation of the mass flow rate for the
evaporated fluid at the interface is non-linear and has to be solved using
an iterative approach.

The change of the wet core volume is calculated using the conser-
vation of mass written for the moisture, assuming that the wet core has
a spherical shape, as:
𝜕𝑅∗

𝑖
𝜕𝑡∗

= − 1
𝜀𝜌∗𝑓 4𝜋𝑅

∗2
𝑖

�̇�∗
𝑓,𝑖, (20)

where 𝜌∗𝑓 represents the fluid density.
The heat transfer problem described by Eq. (14), written for the dry

and wet regions, together with boundary and interface conditions (15)–
(17) was solved using the BEM, Eq. (18) has been solved using an
iterative solver and Eq. (20) by using the classical Euler algorithm. The
BEM derivation for the energy equation is described in detail in the
work of Gomboc et al. [8].

In order to accurately compute the heat and mass source terms one
needs to track all the individual particles in the fluid flow. The particle
positions and velocities in the fluid flow are computed by using the
Lagrangian particle tracking, which requires computation of a particle
position and velocity. The equation of particle motion is given by

𝑑2𝑝
𝑑𝑡

= 𝑎𝑝(𝑣𝑝, 𝑣) , (21)

here 𝑝 is the location of the particle and 𝑎𝑝 is its acceleration, which
epends on the particle velocity 𝑣𝑝 and on the fluid velocity 𝑣. The
quation for the particle acceleration is given by [19] as

𝑑𝑣𝑝
𝑑𝑡

= 𝑔 −
𝜌
𝜌𝑝

𝑔 +
𝑣 − 𝑣𝑝
𝜏𝑝

, (22)

here 𝜌, 𝜈 are the fluid density and viscosity, 𝜌𝑝, 𝑑𝑝, 𝜏𝑝 are the particle
ensity, particle diameter and 𝜏𝑝 = 𝜌𝑝𝑑2𝑝∕𝜌18𝜈 is the particle relax-

ation time. The terms included in Eq. (22) are gravity, buoyancy and
drag. Details on numerical implementation of the Lagrangian particle
tracking can be found in [20,21].

3. Numerical solution of the heat and mass transfer in the contin-
uous phase

The subdomain BEM has been used to solve the mass and momen-
tum equation for the fluid, as well as for the heat and mass transfer
process between the porous particles and the drying air. The BEM
derivation for the solution of flow kinematics Eq. (12) and vortic-
ity transport Eq. (13) is described in detail in the works of Ravnik
et al. [13,22] and will therefore be omitted here. Similarly, the numer-
ical solution of the heat transfer with the moving front, Eqs. (14)–(17),
by BEM is reported in [12]. The main aim of this paper is to describe
the numerical solution of the heat and mass conservation equations
described by Eqs. (6) and (7) using the subdomain BEM, with a special

emphasis on the numerical treatment of the source terms. ∫
Because both the heat and mass conservation equations are
convection–diffusion type equations containing the same terms, i.e. dif-
fusion, convection and source terms, the derivation of the subdomain
BEM will be presented in a general form. The convection–diffusion
equation can be written as:

𝜕𝑢(𝑟, 𝑡)
𝜕𝑡

+
(

𝑣 ⋅ ∇⃗
)

𝑢(𝑟, 𝑡) = 1
𝐾
∇⃗2𝑢(𝑟, 𝑡) + 𝐼(𝑟), (23)

where 𝑢 represents an arbitrary field function, which, in our case, can
be temperature (𝑢 = 𝑇 ) or moisture concentration (𝑢 = 𝐶), 𝑟 is an arbi-
trary spatial vector, 𝐾 is 𝑅𝑒𝑃𝑟 for heat and 𝑆𝑐𝑅𝑒 for mass conservation,
and 𝐼 is a general source term. The general governing Eq. (23) has a
form of a Poisson equation, therefore the elliptic fundamental solution
will be used in derivation of integral equations. The Poisson equation
can be written in the following form:

∇⃗2𝑢(𝑟) = 𝐾𝑏(𝑟), (24)

where 𝑏(𝑟) is a non-homogeneous term on the right hand side, following
the Eq. (23):

𝑏(𝑟) =
𝜕𝑢(𝑟)
𝜕𝑡

+
(

𝑣 ⋅ ∇⃗
)

𝑢(𝑟) − 𝐼(𝑟). (25)

Now we can use the integral form of Green’s second identity for the
Poisson Eq. (24), applying it only to one subdomain of the computa-
tional mesh, resulting in:

𝑐(𝜉)𝑢(𝜉) + ∫𝛤𝑐
𝑢(�⃗�)𝑞∗(𝜉, �⃗�)𝑑𝛤𝑐 + ∫𝛺𝑐

𝐾𝑏(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐

= ∫𝛤𝑐
𝑞(�⃗�)𝑢∗(𝜉, �⃗�)𝑑𝛤𝑐 , (26)

where 𝛺𝑐 represents the computational subdomain or the mesh cell,
𝛤𝑐 is the mesh cell boundary, 𝜉 is the position vector of the source
point, �⃗� is the spatial vector of the cell boundary, 𝑞 = ∇⃗𝑢 ⋅ 𝑛 represents
the normal derivative of the field function, 𝑐 is the free coefficient
that depends on the position of the source point, and 𝑢∗ and 𝑞∗ are
the fundamental solution and its normal derivative, respectively. The
elliptical fundamental solution for 3D case is defined as [23]:

𝑢∗(𝜉, 𝑟) = 1
4𝜋𝑑(𝜉, 𝑟)

, (27)

here 𝑑(𝜉, 𝑟) represents the distance between the arbitrary field and
he source point; 𝑑(𝜉, 𝑟) = ‖

‖

‖

𝜉 − 𝑟‖‖
‖

. The normal derivative of the
undamental solution is defined by the equation:
∗(𝜉, �⃗�) = ∇⃗𝑢∗(𝜉, �⃗�) ⋅ 𝑛, (28)

here 𝑛 represents the surface normal vector.
The Eq. (26) can be rewritten using the expression (25) for the

on-homogeneous term as:

(𝜉)𝑢(𝜉) + ∫𝛤𝑐
𝑢(�⃗�)𝑞∗(𝜉, �⃗�)𝑑𝛤𝑐 + ∫𝛺𝑐

𝐾
𝜕𝑢(𝑟)
𝜕𝑡

𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐

+ ∫𝛺𝑐

𝐾
(

𝑣 ⋅ ∇⃗
)

𝑢(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 =

∫𝛤𝑐
𝑞(�⃗�)𝑢∗(𝜉, �⃗�)𝑑𝛤𝑐 + ∫𝛺𝑐

𝐾𝐼(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 , (29)

A second-order equidistant finite difference (FD) scheme is used to
approximate the time derivative in the Eq. (29):

𝜕𝑢
𝜕𝑡

≈ 3𝑢𝑡 − 4𝑢𝑡−1 + 𝑢𝑡−2

2𝛥𝑡
, (30)

where indices 𝑡, 𝑡 − 1, 𝑡 − 2 represent different time steps, and 𝛥𝑡 is the
ime difference between two time steps.

Due to the solenoidality of the velocity fields (𝑣 ⋅ ∇⃗)𝑢 = ∇⃗ ⋅ (𝑣𝑢), the
omain integral in Eq. (29) can be transformed to:

(

𝑣 ⋅ ∇⃗
)

𝑢(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 = ∇⃗ ⋅ (𝑣𝑢(𝑟))𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 . (31)

𝛺𝑐

∫𝛺𝑐
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With the use of the algebraic relation ∇⃗ ⋅ (𝑢∗𝑣𝑢) = 𝑢∗∇⃗ ⋅ (𝑣𝑢) + 𝑣𝑢 ⋅ ∇⃗𝑢∗

we can split the domain integral in Eq. (31) into two parts:

∫𝛺𝑐

∇⃗ ⋅ (𝑣𝑢(𝑟))𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 = ∫𝛤𝑐
𝑛 ⋅ (𝑢∗(𝜉, 𝑟)𝑣𝑢(𝑟))𝑑𝛤𝑐

− ∫𝛺𝑐

(𝑣𝑢(𝑟)) ⋅ ∇⃗𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 . (32)

We managed to transform one part of the domain integral to the
boundary integral. Using the expressions (30) and (32) and using a fully
implicit time scheme 𝑢 = 𝑢𝑡, 𝑞 = 𝑞𝑡 in Eq. (29), we can rewrite the final
integral form of the transport equation as:

𝑐(𝜉)𝑢𝑡(𝜉) + ∫𝛤𝑐
𝑢𝑡(�⃗�)𝑞∗(𝜉, �⃗�)𝑑𝛤𝑐

+ ∫𝛺𝑐

𝐾
(

𝛼1𝑢
𝑡(𝑟) + 𝛼2𝑢

𝑡−1(𝑟) + 𝛼3𝑢
𝑡−2(𝑟)

)

𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐+

∫𝛤𝑐
𝐾𝑛 ⋅ (𝑢∗(𝜉, 𝑟)𝑣𝑢𝑡(𝑟))𝑑𝛤𝑐 − ∫𝛺𝑐

𝐾(𝑣𝑢𝑡(𝑟)) ⋅ ∇⃗𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 =

∫𝛤𝑐
𝑞𝑡(�⃗�)𝑢∗(𝜉, �⃗�)𝑑𝛤𝑐 + ∫𝛺𝑐

𝐾𝐼(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 , (33)

where coefficients 𝛼1, 𝛼2 and 𝛼3 are 𝛼1 = 3∕(2𝛥𝑡), 𝛼2 = −2∕𝛥𝑡 and
𝛼3 = 1∕(2𝛥𝑡).

Each integral has to be computed for solving the integral Eq. (33).
In order to do this the computational domain is discretized and geom-
etry and field functions are interpolated. The quadratic interpolation
functions were used for the field function 𝑢 inside the cells, 𝑢 =
∑

𝑖 𝜙𝑖𝑢𝑖, as well as on the cell boundary, 𝑢 =
∑

𝑗 𝜑𝑗𝑢𝑗 , while the non-
continuous linear interpolation was used for the field function 𝑞 on the
cell boundary, 𝑞 =

∑

𝑘 𝜅𝑘𝑞𝑘 [24].
The only exception here is the evaluation of the domain integral

containing the source term. As stated before, the point particle ap-
proach is used and the domain integral of the source term can be
solved analytically by using the properties of the elliptic fundamental
solution [4]:

∫𝛺𝑐

𝐾𝐼(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 = ∫𝛺𝑐

∑

𝑙
𝐾𝜗𝑙𝛿

(

𝑟, 𝑝𝑙
)

𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 =
∑

𝑙
𝐾𝜗𝑙𝑢

∗(𝜉, 𝑝𝑙),

(34)

where index 𝑙 represents an individual particle, and summation rep-
resents the sum over all of the particles inside the mesh cell 𝛺𝑐 . As
evident, the integral is now represented by a simple multiplication of
the value of the fundamental solution at the particle location and the
source intensity. When the source point 𝜉 is close to the position of
the individual particle, 𝑝𝑙, the singularity of the fundamental solution
𝑢∗(𝜉, 𝑝𝑙) leads to numerical problems. In this case the source term is
approximated using the PIC approach that is described in detail in the
work of Verhnjak et al. [4], and the domain integral becomes:

∫𝛺𝑐

𝐾𝐼(𝑟)𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 = ∫𝛺𝑐

∑

𝑙
𝐾

𝜗𝑙
𝑉𝑐

𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 =
∑

𝑙
𝐾

𝜗𝑙
𝑉𝑐

[ 2
3

]3
, (35)

where 𝑉𝑐 represents the volume of the mesh cell. By applying interpo-
lation functions in the Eq. (33) one can write:

𝑐(𝜉)𝑢𝑡(𝜉) +
∑

𝑗
𝑢𝑡𝑗 ∫𝛤𝑐

𝜑𝑗𝑞
∗(𝜉, �⃗�)𝑑𝛤𝑐

+
∑

𝑖
𝐾

(

𝛼1𝑢
𝑡
𝑖 + 𝛼2𝑢

𝑡−1
𝑖 + 𝛼3𝑢

𝑡−2
𝑖

)

∫𝛺𝑐

𝜙𝑖𝑢
∗(𝜉, 𝑟)𝑑𝛺𝑐+

∑

𝑗
𝐾𝑣𝑢𝑡𝑗 ∫𝛤𝑐

𝜑𝑗𝑛𝑢
∗(𝜉, 𝑟)𝑑𝛤𝑐 −

∑

𝑖
𝐾𝑣𝑢𝑡𝑖 ∫𝛺𝑐

𝜙𝑖∇⃗𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 =

∑

𝑘
𝑞𝑡𝑘 ∫𝛤𝑐

𝜅𝑘𝑢
∗(𝜉, �⃗�)𝑑𝛤𝑐 + 𝑖𝑐 , (36)

where 𝑖𝑐 represents the contribution of the source terms to the mesh
cell, depending on the distance between the source point and the parti-
cle‘s position, calculated using Eqs. (34) or (35). Finally, by calculating
the integrals, Eq. (37), and by applying a source point to each node of
the mesh cell, we obtain the matrix form of the transport Eq. (38):

[𝐻𝑐 ] = ∫𝛤𝑐
𝜑𝑗𝑞

∗(𝜉, �⃗�)𝑑𝛤𝑐 , [𝐺𝑐 ] = ∫𝛤𝑐
𝜅𝑘𝑢

∗(𝜉, �⃗�)𝑑𝛤𝑐

[𝑆𝑐 ] = ∫𝛺𝑐

𝜙𝑖𝑢
∗(𝜉, 𝑟)𝑑𝛺𝑐 ,

[𝐴𝑐 ] = ∫𝛤𝑐
𝜑𝑗𝑛𝑢

∗(𝜉, 𝑟)𝑑𝛤𝑐 , [�⃗�𝑐 ] = ∫𝛺𝑐

𝜙𝑖∇⃗𝑢∗(𝜉, 𝑟)𝑑𝛺𝑐 , (37)

[𝐻𝑐 ]
{

𝑢𝑡
}

=[𝐺𝑐 ]
{

𝑞𝑡
}

−𝐾[𝑆𝑐 ]
{

𝛼1𝑢
𝑡 + 𝛼2𝑢

𝑡−1 + 𝛼3𝑢
𝑡−2}

− 𝐾[𝐴𝑐 ]
{

𝑣𝑢𝑡
}

+𝐾[�⃗�𝑐 ]
{

𝑣𝑢𝑡
}

+
{

𝑖𝑐
}

(38)

The derived numerical scheme is applied to each mesh cell in the
computational domain, and combined through the compatibility and
equilibrium conditions [12] on the adjoining cell‘s boundary to a global
system of linear equations that has the same form as Eq. (38). Based
on the boundary conditions used for the problem, the global system of
linear equations can be transformed to a general form [𝐴]

{

𝑢𝑡
}

= {𝑏},
where [𝐴] represents the system matrix and {𝑏} the known vector
on the right hand side. The resulting system is sparse, but due to its
overdetermination it is solved by means of an iterative least square
solver [24].

The global algorithm for solving the problem of porous particles
drying in a fluid flow, including a model of conjugate heat and mass
transfer between the particles and the fluid flow, based on the applica-
tion of BEM based methods, can now be summarized as:

ALGORITHM 1

(1) Initialize of Time loop.
(2) Computation of fluid flow by solving Eqs. (12) and (13).
(3) Computation of new particles positions by solving Eqs. (21) and

(22).
(4) Interpolation of temperature and moisture concentration values

to the particle position‘s
(5) Heat and mass transfer computation of the second stage of

porous particle drying by applying local temperature and mois-
ture concentration values at all particle position‘s:

• For each particle: computation of particle mass flux 𝐼𝐶
representing the moisture source in the drying air, by using
Eq. (15).

• For each particle: computation of particle heat flux 𝐼𝑇
representing the heat sink in the drying air, by using
Eq. (18).

(6) Solution of the heat conservation equation for the drying air
temperature based on Eq. (38), where heat sinks for all particles
in computational domain are taken into account.

(7) Solution of the moisture mass conservation equation for the
drying air concentration based on Eq. (38), where mass sources
from all particles in the computational domain are taken into
account.

(8) Proceed to 2.
(9) End of Time loop.

4. Computational example

The above presented numerical model and derived BEM based
computational algorithm have been used in the simulation of particles
drying in flow of hot air. We considered heat and mass diffusion and
heat and mass convection from the particles into the air flow. The two-
way coupling BEM based algorithm for the case of heat transfer was
validated in the [4], whereas the BEM based numerical model of a
single particle drying was validated in [12], so additional validation

of the developed computational Algorithm 1 is omitted here.
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Fig. 1. Geometry of the dryer with three selected cross sections for the presentation of computed flow field values.
Fig. 2. Computational mesh.

With respect to the case set-up, the particles had a uniform size of
00 μm, which enabled an easy and effective assessment of the effect
f the two-way coupling on particle drying kinetics. Two cases were
onsidered with different numbers of particles in the computational
omain. In the first case, 1000 wet particles were used, and in the sec-
nd case 10,000 particles. Regarding the different particles‘ positions
n the computational domain, two-way coupling between the particles
nd the fluid was used together with a parallel computation of the
rying process in the particles. The particles were set out to different
ocal boundary conditions, which led to differences in temperature
nd moisture concentration conditions along each particle’s trajectory,
hich were finally statistically analyzed.

For the drying chamber we used squared pipe geometry with the
ength of 𝐿 = 2000 mm and with a side length 𝑋 = 𝑌 = 15 mm, so the di-

mensionless domain size was 𝑋 = 𝑌 = 1 and 𝐿 = 133.3. The geometry,
with boundary condition positions and positions of cross-section planes,
which was used for result presentations are represented in Fig. 1. The
computational domain was discretized with 7000 quadratic hexahedral
elements, which represents 62,181 computational nodes. One section of
the computational mesh is represented in Fig. 2.

As the drying medium the hot air was selected with an average
velocity at the inlet of 𝑣𝑔 = 0.15 m∕s. The Reynolds number for this
computational example was 𝑅𝑒 = 76.0, with the laminar flow profile
rescribed at the inlet, shown in Fig. 3. The inlet velocity profile was
Fig. 3. Air velocity profile in drying chamber.

calculated based on the Chen analytical solution [25]. The Schmidt and
Prandtl number values were set to 1.0. In both computational cases
all particles were positioned randomly at the inlet surface at the zero
simulation time.

As the species mass conservation equation for the fluid phase
was written for the moisture concentration, the following relation are
needed in order to express the concentration with drying air humidity.
First, the absolute humidity is written as the ratio between the humidity
mass in the air and the dry air mass:

𝑋 =
𝑚𝑤 , (39)

𝑚𝑔
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Fig. 4. Particles positions in the drying chamber at four different times: 𝑎1 and 𝑏1: 0.15 s, 𝑎2 and 𝑏2: 0.30 s, 𝑎3 and 𝑏3: 0.45 s and 𝑎4 and 𝑏4: 0.60 s.
Fig. 5. Temperature field inside the drying chamber at three different cross section planes (see Fig. 1) after drying time of 0.15 s (a1 in Fig. 4).
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where 𝑚𝑤 represents the humidity mass, and 𝑚𝑔 the dry air mass. The
relation between the humidity mass fraction and air humidity can be
expressed as:

𝜉𝑤 =
𝑚𝑤
𝑚ℎ𝑔

=
𝑚𝑤

𝑚𝑤 + 𝑚𝑔
→ 𝜉𝑤 = 𝑋

1 +𝑋
(40)

where 𝑚ℎ𝑔 represents the mass of humid air. The relation between the
mass concentration 𝐶, the mass fraction and the absolute humidity is
hen expressed as:

=
𝑚𝑤
𝑉ℎ𝑔

= 𝜉𝑤𝜌ℎ𝑔 , (41)

here 𝑉ℎ𝑔 represents the volume of humid air and 𝜌ℎ𝑔 the density of the
umid air. In the particle frame, the humidity 𝑋𝑝 of the dried particle
s represented as the relation between mass of water and dry material
ass:

𝑝 =
𝑚𝑣
𝑚𝑑

, (42)

where 𝑚𝑤 represents the mass of water in a particle and 𝑚𝑑 the mass
of dry particle material.
The inlet temperature of the particles was set to 𝑇𝑝 = 20 ◦C. The
rying air temperature at the inlet was set to 𝑇𝑔 = 200 ◦C, and its
bsolute humidity to 𝑋 = 0.02 kg∕kg. The initial temperature and
umidity field of the fluid phase were homogeneous in the whole com-
utational domain, whereas the flow field was obtained as the solution
f the steady-state simulation, and was kept constant during the drying
omputation, as only a one-way coupling in the case of the momentum
ransfer was considered. The simulation time step for the drying case
as set to 𝛥𝑡 = 0.001 s. The following material properties were used for

the particles‘ drying kinetics calculation: Thermal conductivity of the
wet material 𝜆𝑤 = 0.508 𝑊

𝑚𝐾 , thermal conductivity of the dry material
𝑑 = 0.0512 𝑊

𝑚𝐾 , porosity 𝜖 = 0.86, wet material specific heat 𝑐𝑤 =
.835 kJ∕kgK, dry material specific heat 𝑐𝑑 = 1.129 kJ∕kgK, initial
oisture content 𝑋𝑝 = 0.85 kg∕kg, density 𝜌𝑝 = 1007 kg∕m3.

5. Results and discussion

In this Section, the simulation results of the two-way coupling
model between particles and air flow are presented for the two cases
with different numbers of particles in the computational domain, as
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Fig. 6. Humidity field inside the drying chamber at three different cross section planes (see Fig. 1) after drying time of 0.15 s.
Fig. 7. Temperature field inside the drying chamber at three different cross section planes 1 after drying time of 0.3 s (a1 in Fig. 4).
discussed in the previous Section. In Fig. 4 the computed positions
of particles at different time instants inside the drying chamber are
presented. Because particles were introduced into the computational
domain at random positions at the inlet plane where a fully developed
flow is prescribed, they moved with different velocities and reached
different locations after a certain time, as is shown in Fig. 4. As evident,
the laminar velocity profile leads to increased penetration lengths for
the particles, positioned at the inlet near the center of the channel, with
respect to the particles positioned near the chamber wall.

Because at the inlet the particles have a lower temperature than the
drying air, heat is transferred from the drying air to the particles, which
enables a sustainable moisture evaporation process within the particles.
A result is a local cooling of the fluid, observed already in the case of
1000 particles, as evident from Fig. 5, showing the conditions in the
drying chamber after the drying time of 0.15 s.
Similarly to the temperature field, Fig. 6 shows the humidity field
in the fluid phase, where we can see a local increase in the humidity
values, a result of the moisture evaporation within the particles and its
diffusion to the particle surface, where it acts as a water vapor mass
source in the drying air.

The 1000 particles case inside the drying chamber represents rela-
tively low particle density case and the effect of the particles on the
drying air is small. A much more intensive changes can be observed in
Fig. 7 where the temperature field in the drying chamber for the case
of 10,000 particles is shown. It is interesting to observe lower temper-
atures in the cross sections near the solid wall (Fig. 7) together with
higher humidity values (Fig. 8), which is a result of longer residence
times of the particles in this region due to lower fluid velocities with
respect to the conditions in the bulk of the flow. The same influence
on the temperature and humidity field can also be observed in other
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Fig. 8. Humidity field inside the drying chamber at three different cross section planes 1 after drying time of 0.3 s.
Fig. 9. Particles drying time a) Case 1 (1000 particles) b) Case 2 (10,000 particles).
near wall regions in the drying chamber. Due to the random positioning
of the particles at the inlet the local temperature as well as humidity
conditions at particle positions and in their wake also exhibit a certain
amount of local oscillations, introducing the effect of randomness to
the drying of transported porous particles.

From the engineering point of view, we usually want to determine
the average required particle residence time in the drying chamber in
order to achieve the desired drying quality of the products. To achieve a
complete drying, the particle residence time within the chamber should
be larger than its drying time. In this respect, one usually considers
constant drying conditions, which would in our case correspond to the
one-way heat and mass transfer coupling. When the one-way coupling
is considered, all the particles are dry within 0.709s, regardless of their
position or number density in the channel, as there is no influence
of the particles on the temperature and humidity field in the drying
air. When the two-way coupling is taken into account, the drying time
for all the particles increases, as the heat and mass transfer two-way
coupling directly affects the local drying conditions lading to different
drying kinetics for individual particles. In Fig. 9 the histogram of drying
times for the case with 1000 particles is presented. The average drying
time for the 1000 particles has increased to 0.737 s, although the
difference in drying times between the particles is not significant. In the
case with 10,000 particles the drying time further increased to 0.836 s,
with a much more pronounced drying time differences between the
particles (see Fig. 9 right). The same conclusions can be made when
we observe the particle average temperature, presented in Fig. 10 for
the time instant of 0.5 s, and the particle humidity 𝑋𝑝, presented in
Fig. 11 for the same 0.5 s. In the latter case, the one-way coupling
model predicts the average temperature of the particles as 97.35 ◦C,
while the average temperatures in the two-way coupling cases were
96.86 ◦C (Case 1) and 94.66 ◦C (Case 2).

6. Conclusions

In this paper a BEM based numerical model for the two-way heat
and mass transfer coupling in the Euler–Lagrange resolved two-phase
flows, with drying of porous particles resolved at the particle level, was
presented. As point source model was used for the interaction model
between the continuous and dispersed phases, its numerical implemen-
tation in the framework of BEM based solution of heat and humidity
conservation in the fluid phase was based on the direct implementation

of the Dirac delta distribution, which leads to exact computation of
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Fig. 10. Temperature of the particles after 0.5 s drying time; (a) Case 1 (1000 particles) (b) Case 2 (10,000 particles).
Fig. 11. Humidity of the particles after 0.5 s drying time; (a) Case 1 (1000 particles) (b) Case 2 (10,000 particles).
he point source impact on the surrounding computational nodes. The
erived two-way coupling between the particles and the fluid leads to
umerically very accurate evaluation of the impact of heat and mass
oint sources, originating from the particle level phenomena. The only
xception presents the case when the point source is in close proximity
o the source point, where due to singularity of the fundamental solu-
ion an approximation of the Dirac Delta distribution has to be applied,
n our case in form of the Particle-in-cell approach. Two cases of drying
f porous particles in a simple narrow drying channel were computed
s a test example, with different numbers of particles traveling through
he channel and exchanging heat and mass with the fluid phase. The
omputational results show, that the presented BEM based two-way
oupling model is capable of generating high quality computational
esults and can be seen as a promising new computational tool in
wo-way coupled multiphase flows.
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