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Abstract
Dynamic thermography is a promising new non-invasive diagnostic technique 
for skin cancer, not just to identify the skin tumour in its early stage but also 
to evaluate some of tumour parameters showing the stage and invasiveness. 
This paper covers the solution of inverse bioheat problems of simultaneous 
identification of tumour diameter, thickness, blood perfusion rate and 
thermoregulation coefficient based on the surface temperature difference 
between healthy skin and lesion during the rewarming period of dynamic 
thermography. The problem has been treated using numerically generated 
measurement data for Clark II and Clark IV tumours by adding noise to mimic 
real measurement data. The solution is based on a more realistic 3D numerical 
model, composed of different layers including the thermoregulation response 
of the skin, tumour and surrounding tissue using a deterministic Levenberg–
Marquardt optimisation algorithm that is robust and fast. The paper covers 
the analysis of the starting point of the solution, randomness and level of 
added noise, as well as the effect of numerical model error on the inverse 
solution. Tumour diameter and thermoregulation response can be estimated 
accurately regardless of noise and stage, while blood perfusion and tumour 
thickness can only be estimated accurately for low noise level or later tumour 
stage. The solution sensitivity to metabolic heat generation, thickness, blood 
perfusion rate and thermoregulation coefficient of skin and fat was low, 
while heat capacity and thermal conductivity of skin and tumour should be 
determined precisely in the numerical model to be able to evaluate all four 
tumour parameters as accurately as possible.
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1. Introduction

In recent years thermography or infrared thermal (IRT) imaging has developed drastically due 
to the development of infrared (IR) cameras, electronics, technology, computers and numerical 
modeling, and therefore became a very valuable tool for many applications in different fields 
of science. Thermography is usually used for non-invasive surface temperature measurement 
based on the emitted thermal radiation from the surface, which is captured by the IR camera. 
Therefore, it has an advantage over the classical thermocouple measurement when a contact-
less method over a large area of interest is needed, which is especially useful for monitoring 
purposes. Elevated temperatures of the human body or changes of the temperature have been 
connected with diseases for which thermography found its way in medicine for various appli-
cations like breast cancer diagnostics, dermatological applications, blood perfusion monitor-
ing, diagnosis of vascular disorder, fever screening, dental diagnostics, diagnosis of thyroid 
gland disease, eye disease, as well as for therapeutic assessment [1–16]. Thermography in 
medicine can be done in two ways, passively or actively. Passive or static thermography mea-
sures the skin temperature or investigated tissue under a steady-state condition, which is time 
consuming because the patient has to acclimatise to the conditions in a temperature controlled 
room [17]. Active or dynamic thermography induces thermal stress by heating or cooling the 
observed tissue and then measuring the thermal response during the recovery phase, which 
does not need patient acclimatisation and can reveal more information about the tissue under 
investigation [5, 6, 8, 12, 15–19].

In this paper, we will focus on dynamic thermography for skin tumour detection, as shown 
by Çetingül and Herman [12]. They carried out a clinical study on 35 patients to show the 
advantage of dynamic thermography by cooling the skin and observing the recovery phase. 
By observing the temperature difference between the lesion and healthy skin, they managed to 
distinguish a malignant melanoma or squamous cell carcinoma from pigmented moles in their 
early stage. Among all types of skin tumours, malignant melanoma is the most fatal because it 
metastases rapidly and can quickly spread to soft tissues like lungs and liver [20]. According 
to Clark et al [21] and Breslow [22], there is a direct correlation between the survival rate and 
invasiveness or depth of the tumour. Clark classified skin tumours into five levels from I to 
V, which is still used nowadays. Clark I represents melanoma in situ, which means that the 
cells are only in the epidermis or outer layer of the skin. Clark II is located in the papillary 
dermis layer of the skin, while Clark III is touching the reticular dermis. Clark IV means that 
the tumour already spread into the reticular or deep dermis, while Clark V means that it has 
grown into the fat layer under the skin. For Clark II, the survival rate for malignant melanoma 
was 72.2%, while for Clark III, IV and V they were 46.5%, 31.6%, 12.0%, respectively [21]. 
For this reason, it is important to detect malignant skin tumour in its early stage [12, 21–25].

The most frequently used diagnostic technique is visual inspection based on the ABCDE 
(Asymmetry, Border, Colour, Diameter, Evolution) criteria and dermatoscopes. As it is known, 
the ABCDE criteria uses only qualitative guidelines for melanoma identification and can there-
fore produce high rates of false positive or false negative identification. To avoid the risk of 
missing an early stage melanoma, excisional biopsies are performed for further pathological 
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investigation [25–28]. Therefore, new techniques for skin tumour detection are being devel-
oped, which involve a compromise between certain aspects like effectiveness, accuracy, cost 
and invasiveness, like digital photography, multispectral imaging systems, confocal scanning 
laser microscopy (CSLM), laser Doppler perfusion imaging (LDPI) optical coherence tomog-
raphy (OCT), ultrasound and magnetic resonance imaging (MRI) [24, 29–37].

As showed by many authors, dynamic thermography can be a promising diagnostic tech-
nique in dermatology for early skin tumour detection [1–3, 5, 6, 8, 12, 13, 18, 35, 38]. Skin 
tumour has higher blood perfusion rate as well as metabolic heat generation [12, 37, 39, 
40] from the healthy surrounding tissue, and because the heat transfer in tissue is mostly 
governed by these two parameters, the tumour will leave a temperature signature, which can 
be detected using an IR camera. The temperature difference between the lesion and healthy 
skin is very small and hard to detect using static thermography. Dynamic thermography, on 
the other hand, by cooling the investigated tissue, will induce higher temperature differences 
during the rewarming period, which can be more easily observed [12, 41]. However, dynamic 
thermography cannot be used just for detection, the taken measurement of temperature during 
rewarming can be used to evaluate several tumour parameters like size, position, blood perfu-
sion rate, etc using an inverse problem approach.

There have been many papers on solving inverse bioheat problems of estimating location 
and size of the tumour [42–45], as well as more specific studies for breast cancer detec-
tion [16, 46, 47], skin tumour [48–51] and blood perfusion estimation [44, 52–54]. However, 
many of them still use simplified 2D or 3D numerical models composed only of tumour and 
surrounding tissue [42, 43, 45, 48]. Luna et al [48] used a simplified 2D numerical model to 
identify thickness and blood perfusion rate of the skin tumour based on a steady-state surface 
temperature using simulated annealing (SA) algorithm. Bhowmik and Repaka [49] upgraded 
the problem by using a 3D multilayer model of the skin to estimate four tumour parameters; 
thickness, diameter, blood perfusion rate and metabolic heat generation, by genetic algorithm 
(GA) and SA using steady-state temperature information. Bhowmik et al [55, 56] also made 
some studies about how difficult it is to estimate the position and size of the tumour around 
thermally significant blood vessels using static and dynamic thermography or FMTWI (fre-
quency modulated thermal wave imaging). Like Bhowmik and Repaka [49], we successfully 
estimated four tumour parameters using temperature information from dynamic thermogra-
phy using DOE (design of experiment) [38] where we also investigate the difference between 
static and dynamic thermography and why dynamic thermography can give us more informa-
tion about the investigated tissue.

The solution of the inverse problem strongly depends on the measurement noise and the 
accuracy of the numerical model based upon the estimation of unknown parameters is made. 
Simplified numerical models cannot give a realistic estimation of searched variables because 
the simulated data do not follow the measurement data accurately. Therefore, a great effort 
should be put in making the numerical model as realistic as possible by including the ther-
moregulation response of the skin, tumour and muscle during dynamic thermography, as 
described in our previous work [41]. Therefore, this paper present the possibility to estimate 
four tumour parameters; diameter, thickness, blood perfusion rate and thermoregulation coef-
ficient (response), using non-invasive dynamic thermography based on a more realistic 3D 
numerical model. For now, the inverse bioheat problem is investigated and solved numerically, 
representing a base for further research and experimental work. To solve the inverse problem 
we used the Levenberg–Marquardt algorithm, as optimisation, combined with direct numer-
ical simulation using a 3D multilayer model including the thermoregulation response of blood 
perfusion and metabolic heat generation as described in [41]. The problem is solved based 
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on the surface temperature information or temperature difference between the tumour and 
healthy skin during the rewarming period, that has been generated numerically. We tested the 
inverse analysis algorithm for two different test cases; Clark II and Clark IV tumours, to evalu-
ate how the tumour stage affects the evaluation of the parameters. However, to mimic real 
measurement data, noise has been added to the generated temperature response, to analyse 
how the inverse solution is affected by noise. The paper also covers how the model error or 
uncertainty of some parameters affects the solution, and which of them should be determined 
more accurately for a precise parameter estimation.

Therefore, the novelty of this paper can be found in using a more realistic 3D multilayer 
tissue model including the thermoregulation response to identify four skin tumour parameters 
based on dynamic thermography measurements, especially the feasibility of estimating the 
thermoregulation coefficient of the skin tumour, which has not been estimated before. The 
novelty can be also found in a more detailed analysis of the inverse problem for the estimation 
of four skin tumour parameters, regarding the measurement noise and model error.

The paper is organized as follows: section 2 presents the inverse bioheat problem with the 
numerical model described by the governing equation, thermoregulation model and boundary 
conditions, and the Levenberg–Marquardt optimization algorithm. Section  3 discusses the 
test examples for Clark II and IV tumours, material properties, computational mesh, etc to 
simulate dynamic thermography together with a description of measurement data and model 
error. Section 4 discusses the solution of the inverse problem using different starting points 
and level of measurement noise. The paper closes with section 5 that summarizes this work 
and emphasizes the importance of its results.

2. Inverse bioheat problem

Direct problems are used when the numerical simulation of certain process or phenomena is 
needed. However, when unknown variables, material properties, shape or mathematical model 
are needed and cannot be determined using direct measurement or observation, we are dealing 
with inverse problems, which are solved based on the proposed mathematical and numerical 
model and indirect measurement data. The difference between direct and inverse problems is 
that, for direct problems, the numerical model composed from governing equations, computa-
tional domain, boundary conditions, material properties, etc is well defined and known, while 
for inverse problems we are trying to identify or estimate the missing model parameters which 
are not exactly determined. Here, the accuracy of estimated parameters strongly depends on 
the proposed model that describes the observed phenomena or process, its error and the mea-
surement noise.

Because the inverse solution depends on the mathematical and numerical models adopted, 
the most common approach is to initially solve a direct problem with guessed unknown 
parameters and then comparing the solution of the direct problem with the measurement data. 
To minimize the number of guesses, optimisation techniques are used, minimizing the differ-
ence between the direct problem solution and measurement data, and the optimum represents 
the solution of the inverse problem [38, 44, 46, 48, 49, 54]. Therefore, inverse problems are 
difficult to solve and usually ill-posed, which means that the solution of the inverse problem 
will not converge when there is noise in the measurement data or the numerical model does 
not follow the observed process. Usually, for ill-conditioned, problems we have to impose a 
regularization or damping technique to stabilize the solution [52, 54].

Inverse problems can be practically applied everywhere and therefore, they found their way 
in medical diagnostic as well. The idea of detecting location, size and stage of the tumour, 
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cancerous tissue or other vascular diseases using information of abnormal temperature or heat 
flux on the skin surface is not new [4, 14, 45, 50]. The tissue temperature is mainly controlled 
by the blood perfusion rate, metabolic heat generation and heat transfer with the surrounding 
environment. If the tissue temperature changes, this can indicate an abnormal pathological 
or physiological state of the tissue under the same environmental conditions. It is known that 
cancerous tissue or tumours have elevated blood perfusion rate and metabolic heat generation 
[12, 37, 40], which reflects in elevated tissue temperature on the skin surface, depending on the 
location and its stage [45, 46, 49–51]. To estimate the position, size and stage of the tumour, a 
non-invasive technique based on the skin surface temperature is very appealing and promising 
nowadays due to the development of IR cameras, numerical methods and computers. A very 
popular problem using this technique is breast cancer detection, which is still under develop-
ment by many researchers [1, 3, 14–16, 46]. As already described, in this paper we will apply 
an inverse bioheat problem to skin tumour identification using dynamic thermography, that 
showed many advantages over the static one [8, 12, 13, 38, 41].

The size of the tumour and its blood perfusion rate can be easily obtained using the 
dynamic approach, even for an early stage tumour and noisy data, while the tumour metabolic 
heat generation would be hard to estimate due to its low sensitivity [12, 38, 41, 49]. In our 
previous paper [41], we introduced a new numerical model for skin tumour tissue including 
the local thermoregulation response of the skin and tumour, imposing the blood perfusion 
rate and metabolic heat generation as temperature-dependent variables. The thermoregula-
tion response plays its role in dynamic thermography and has an effect on the temperature 
difference between the tumour and healthy skin during the recovery phase. Because there is 
so little information about the blood perfusion thermoregulation for the tumour, especially 
for cooling, we assumed the value of the thermoregulation coefficients Q10,b and Q10,m and 
modeled an almost linear response. However, dynamic thermography can help us not only to 
estimate the size and blood perfusion rate of the tumour but also to get information about the 
thermoregulation response.

This paper tries to estimate four skin tumour parameters that are important from the diag-
nostic point of view, to identify the stage and invasiveness of the tumour, using only non-inva-
sive measurements of skin surface temperature by dynamic thermography. These parameters 
are diameter and thickness of the tumour, tumour blood perfusion rate and thermoregulation 
response coefficient, which represents the novelty of this paper. Tumours are mostly irregular 
in shape as well as non-homogeneous due to their vascularity; thus, the geometrical param-
eters in this paper represent an approximated circular shape of the tumour while physiological 
parameters represent the mean values of the investigated lesion, both of which are important 
for diagnostic. In our previous work [38], we discussed the difference between using static 
and dynamic thermography for tumour parameter estimation, but now we replace the meta-
bolic heat generation by the thermoregulation coefficient due to its low sensitivity. From the 
diagnostic point of view, the most important parameters are blood perfusion rate and thickness 
of the tumour, which reflect its invasiveness, however the information about the thermoregula-
tion response of the tumour or its thermoregulation coefficient can help us in understanding its 
physiology and also the potential of monitoring the effectiveness of new drugs.

This paper presents the numerical background for solving inverse bioheat problems and 
the feasibility of making dynamic thermography as a skin tumour screening technique, cover-
ing the numerical model based on which the estimation of four unknown parameters can be 
made. Therefore, the problem is solved using numerically generated measurement data with 
known values of the searched parameters, to be able to evaluate how the model uncertainty 
and measurement noise affect the inverse solution, which is also a novelty of this paper. By 
adding different levels of noise to the measurement data, we are able to estimate the sensitivity 
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of the inverse problem solution which is needed to evaluate the errors when real measurement 
data are used, as well as by changing different model parameters due to uncertainty or data 
noise, we are able to analyze which model parameters are the most important for an accurate 
estimation of the searched parameters.

2.1. Numerical model

This paper adopts a non-homogeneous 3D model of the skin, composed of epidermis, papil-
lary dermis, reticular dermis, fat, muscle and a tumour in the skin layers, as shown in figure 1. 
The model also includes the thermoregulation response of the skin, tumour and other tissues 
to predict the skin temperature during the recovery phase of dynamic thermography as accu-
rately as possible. The base for the non-homogeneous model has been taken from Çetingül 
and Herman [12, 39], Cheng and Herman [18] and Bhowmik and Repaka [49], while the base 
for the tissue thermoregulation response has been taken from Silva et al [57] and Fiala et al 
[58, 59]. A more detailed description of the model can be found in our previous work [41]; 
therfore, only the most important aspects of the model will be presented in this paper.

Çetingül and Herman [39] concluded that the actual shape of the lesion does not affect 
the temperature response on the skin surface during the rewarming period and that the most 
important tumour parameters are average volume and thickness. Therefore, in this model, we 
use a cylindrical representation of the tumour, described by diameter and thickness. Even if 
the actual shape of the tumour is not cylindrical, diameter and thickness represents the average 
value of the non-symmetrical tumour approximated with the cylinder, which is still important 
to evaluate the stage or invasiveness of the skin tumour. To make the modelling easier and to 
reduce the computational time the whole computational domain has been modelled using a 
cylindrical shape, as can be seen in figure 1.

To describe heat transfer in a biological tissue, we use Pennes’ bioheat model [60], which 
is widely accepted [15, 18, 19, 39, 46, 49, 50, 57] and is written as:

ρcp
∂T
∂t

= �∇ ·
(
λ�∇T

)
+ ωbρbcp,b (Ta − T) + qm, (1)

Figure 1. Computational domain of the numerical model including skin tumour: (a) 
isometric view and (b) cross-sectional view with notation.
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where T = T(�r, t) represents tissue temperature, ρ , λ and cp  are the effective tissue density, 
thermal conductivity and specific heat, respectively, ωb is blood perfusion rate, ρb blood den-
sity, cp ,b is specific heat of the blood, Ta is arterial blood temperature, t time and qm metabolic 
heat source. The blood perfusion rate is a scalar representing the volumetric blood flow rate 
per volume of the tissue through small arterioles and capillary bed. Pennes assumed that heat 
transfer between the blood flow and surrounding tissue happens on the capillary level due to 
the large interfacial area, therefore, the blood perfusion term acts like a heat source or sink 
depending on the temperature difference between tissue and arterial blood flow. During the 
cooling process in dynamic thermography, blood perfusion acts like a heat source, heating up 
the tissue during thermal recovery, similar to the metabolic heat source which depends on cell 
activity. Between these two effects, blood perfusion plays a major role in reheating the tissue.

Material properties and other parameters in equation (1) are usually treated as constant due 
to the lack of an accurate mathematical model to describe the changing mechanism. These 
parameters are also estimated because of the lack of measurement data or because of the 
large deviation from various authors [39, 61, 62]. However, because it is known that blood 
perfusion rate and metabolic heat generation of skin, muscle and other tissues are regulated 
by central and local thermoregulation [58, 59], we include a local thermoregulation model to 
simulate the cooling effect of dynamic thermography more accurately. Therefore, metabolic 
heat generation and blood perfusion rate for each tissue have been modelled using the van’t 
Hoff effect [57–59, 62–64] as

qm (T) = qm,basQ

(
T−T0

10

)

10,m ,
 (2)

where qm,bas represents the basal metabolic rate at rest, Q10,m the metabolic rate coefficient and 
T0 is the equilibrium temperature of the body, and

ωb (T) = ωb,basQ

(
T−T0

10

)

10,b , (3)

where now Q10,b represents the blood perfusion rate coefficient, which is usually the same as 
Q10,m [57], and ωb,bas represents the basal blood perfusion rate. All other parameters and mat-
erial properties in Pennes equation (1) such as density, specific heat, thermal conductivity, etc 
have been treated as constant for each layer.

To simulate dynamic thermography or the cooling/rewarming process of the skin, we have 
to prescribe appropriate initial and boundary conditions for the computational domain. Due to 
the cylindrical shape of the domain, we introduce a cylindrical coordinate system �r = �r(r,ϕ, z) 
to simplify the notation. For the bottom part, we prescribe the constant body core temperature 
T0, assuming that the muscle tissue is thick enough, as

T (r,ϕ, z, t) = T0, 0 � r � D/2, z = 0, 0 � t � τ , (4)

where D is the diameter of the computational domain and τ  represents the simulation time 
including the cooling process of dynamic thermography. On the sides of the computational 
domain, we prescribe adiabatic boundary conditions assuming that the diameter D of the com-
putational domain is large enough not to affect the computational solution:

∂T (r,ϕ, z, t)
∂r

= 0, r = D/2, 0 � z � H, 0 � t � τ , (5)

where H represents the total height of the computational domain. At the skin surface, we 
have to prescribe the cooling and rewarming processes. For the cooling process, a constant 
temperature has been chosen due to the deep penetration and high temperature contrast during 
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the rewarming period [18], while for the rewarming period the heat transfer between the sur-
rounding environment and the skin has been modeled using a Robin boundary condition. 
Therefore, for the skin surface, the following boundary condition has been prescribed:

T (r,ϕ, z, t) = Tc, 0 � t � tc,

λ
∂T (r,ϕ, z, t)

∂z
= α [T (r,ϕ, z, t)− T∞] , tc < t � τ ,

0 � r � D/2, z = H, (6)

where Tc represents the cooling temperature, tc the cooling time period, α represents the heat 
transfer coefficient and T∞ the surrounding temperature. The heat transfer coefficient can 
include many effects such as heat convection, thermal radiation and water evaporation [49, 57, 
59]. However, thermal radiation is negligible in this case due to the small temperature differ-
ence between the skin and surrounding environment, as well as water evaporation by sweat-
ing because the cooling-rewarming process does not induce sweating. The main contrib ution 
during the rewarming period is heat convection with the surrounding air, that is not intense 
as the skin rewarms mostly because of the blood perfusion rate or internally generated heat. 
For all described boundary conditions the angle ϕ varies from 0 � ϕ � 2π and was omit-
ted in the above description for a clearer presentation. For the initial temperature condition 
T(r,ϕ, z, t = 0), we prescribe the steady-state solution of the bioheat problem determined 
with the boundary conditions (4), (5) and the rewarming part of condition (6). To solve the 
transient bioheat problem, simulating the dynamic thermography defined by equation  (1), 
corre sponding models (2) and (3) and boundary conditions (4)–(6), we also have to impose 
equilibrium and compatibility conditions on the interface between two layers. The compat-
ibility condition is Tl = Tl+1 and equilibrium condition λl∂Tl/∂nl = λl+1∂Tl+1/∂nl+1, where 
n represents the normal on the interface and indices l and l  +  1 represent adjoining tissues. 
These two conditions across interfaces impose continuity of the temperature and heat flux.

To solve the inverse bioheat problem a fast and numerically accurate solver is needed, 
especially when solving an inverse problem identifying several parameters, because the num-
ber of model evaluations rapidly increases with the number of parameters and the computa-
tional time can go into days and months. Because of the shape of the computational domain 
and adiabatic boundary conditions on the sides, the solution of the transient bioheat trans-
fer is 3D-axisymmetrical, which means that the solution does not depend on the angle ϕ, 
therefore T = T(r, z, t). For this reason, we can reduce the problem size by using only a 2D 
cross-sectional mesh. To solve the direct bioheat problem using described numerical model, 
a subdomain BEM (Boundary Element Method) approach using a 3D-axisymmetrical elliptic 
fundamental solution has been used, as described in our previous work [41]. The solver is fast, 
accurate and adequate to tackle the inverse problem presented in this paper.

2.2. Optimisation algorithm

The inverse bioheat problem tackled in this paper is to estimate four tumour parameters 
(diameter, thickness, blood perfusion rate and thermoregulation coefficient) based on the skin 
temper ature response during the rewarming period of dynamic thermography. The observa-
tion variable upon which the estimation is made is the surface temperature difference between 
the tumour and the healthy skin during the recovery phase. Therefore, during the cooling 
process, it is necessary to cool down the lesion and a surrounding healthy skin upon which 
the temperature difference is evaluated. The advantage of using the temperature difference 
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and not the absolute temperature is to avoid the error of absolute temperature measurements, 
as well as to reduce the error made by the prescribed boundary conditions in the model. As 
we already suggest in our previous paper [41], observing the temperature difference during 
dynamic thermography is more appropriate than observing the absolute temperature, because 
the temperature difference carries the information about the underlying tumour, as observed 
by many authors [12, 46, 48–50].

We used an optimisation approach to solve the inverse problem by introducing an objective 
function, which is minimized during the optimisation process. The objective function for this 
inverse problem is defined as

F (�y) =
nt∑

t=1

np∑
p=1

(∆Ts,p,t (�y)−∆Tm,p,t)
2
= �f tr (�y) ·�f (�y) , (7)

where F(·) represents the value of the objective function, �y  is the vector of unknown param-
eters, ∆Ts and ∆Tm stand for the simulated and measured skin surface temperature differ-
ence during the rewarming period, respectively, t and p  stand for time and location of the 
temperature measurement or simulated response, nt and np  are the number of observed data in 
time and the number of measurement points, respectively, �f (·) represents the residual vector; 
�f (�y) = ∆Ts (�y)−∆Tm = { fi; i = 1, m}, where m = ntnp, and tr stands for transpose. Vector 
�y  is defined as �y = �y (d, h,ωb, Q10) = {yj, j = 1, n}, where n  =  4, d represents the diameter 
of the tumour, h its thickness, ωb the blood perfusion rate and Q10 = Q10,m = Q10,b the ther-
moregulation coefficient of the tumour, while y j  represents the parameter j  in general. As can 
be seen, the objective function reflects the difference between the direct problem solution 
for a given set of searched parameters and the measurement data. When the minimum of the 
objective function is found, the solution to a given inverse problem is obtained. For the inverse 
problem, the objective function has to have only one global minimum, otherwise the solu-
tion is not unique and the evaluation of parameters is not possible [38, 49]. The skin surface 
temper ature response of dynamic thermography is enough to give us a unique solution for 
four different parameters even for noisy measurement data, while using static thermography 
is not [38].

We use a deterministic optimisation algorithm because the objective function for dynamic 
thermography is smooth [38], thus they are faster than stochastic optimization techniques 
like GA (genetic algorithm), PSO (particle swarm optimisation) or SA (simulated annealing) 
due to the lower number of direct problem evaluations. The optimisation technique used in 
this paper is the Levenberg–Marquardt (LM) algorithm, which is a combination of steepest 
descent and Gauss–Newton optimisation. In our previous paper [52], which estimated the 
space-dependent blood perfusion parameter, the LM algorithm showed to work better than 
the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm, was faster and not sensitive to 
the initial guess, which is the reason for choosing it. We could also use more basic determin-
istic optimisation like SD (steepest descent) or CG (conjugate gradient) method which are 
first-order and have linear convergence rate, however the convergence rate of LM algorithm 
is superlinear near the solution making the optimisation process faster. In general, the optim-
isation algorithm can be written as

find �y∗ = argmin�y [F (�y)] , (8)

where �y∗ represents the minimum of the objective function or solution of the inverse problem, 
while for a deterministic approach a better solution is found as

�yk+1 = �yk + βv�sk ⇒ F (�yk+1) < F (�yk) , (9)
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where �s  represents the search direction, β a step size and indices k and v stand for iteration and 
trial step, respectively. Each approach defines the search direction and step size in its unique 
way. LM algorithm uses the linear Taylor expansion of the residual vector �f (�yk +�sk), that 
gives a search direction as the solution to the equation system [52]:

(
[J]trk · [J]k + µk [I]

)
�sk = − [J]trk ·�f (�yk) , (10)

where [J] represents the Jacobian matrix, µ is a damping parameter and [I] the identity matrix. 
As seen from equation (10) the search direction is evaluated at each iteration step, together 
with the Jacobian matrix and damping parameter. The Jacobian matrix is evaluated numer-
ically using first-order finite difference scheme as

Ji,j =
∂fi
∂yj

≈
fi (�y +∆yj)− fi (�y)

∆yj
, (11)

where indices i and j  represent the row and column of matrix [J], respectively, or residual data 
i and parameter j , and ∆yj represents the change of parameter j , which has been taken as 1% of 
its value; ∆yj = 0.01yj. To evaluate the Jacobian matrix and to calculate the new search direc-
tion at each iteration step k, we have to make four evaluations of the direct problem, chang-
ing the value of the unknown parameters separately. This is the cost of using this approach, 
because the search direction is based on the gradient of the objective function that we need to 
evaluate.

Once the search direction is obtained from equation (10), we can update the solution by 
using equation  (9) and check the descent criteria; F (�yk+1) < F (�yk). For the first trial the 
step size is taken as β0 = 1.0, because the search direction is also controlled by the damping 
parameter µ. If the descent criteria is not met, the step size is then reduced by βv+1 = βv/2.

The damping parameter is calculated at each iteration as [52]:

µk+1 = µk max
[

1
3

, 1 − (2θk − 1)3
]

, (12)

where θ represents the gain ratio defined as

θk =
F (�yk)− F (�yk+1)

Z (0)− Z (βv�sk)
, (13)

where Z (·) represents a linear Taylor expansion of the objective function. For the first itera-

tion step the damping parameter has been chosen as µ0 = 10−5 max
[
[J]tr · [J]

]
. If the damp-

ing parameter is high, the LM method will calculate the search direction close to the steepest 
descent where the absolute value of the search direction will be small, therefore there is no 
need to apply optimum step size searching. However, if the damping parameter is low, the 
search direction will be close to the Gauss–Newton direction and convergence will be much 
faster.

To stop the optimisation algorithm, we used three stopping criteria where only one of them 
has to be fulfilled [52]; 

k > kmax, (14)
∥∥∥[J]trk ·�f (�yk)

∥∥∥
∞

� ε1, (15)

‖�yk+1 −�yk‖ � ε2 (‖�yk‖+ ε2) , (16)
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where kmax represents the maximum number of iterative steps and ε1 and ε2 the tolerance 
for the gradient and step size, respectively. The first stopping criteria is met when the num-
ber of iterative steps is greater than allowed, while the second one represents the minimum 
value of gradient and is met when we are in the proximity of the optimum, and the third 
one the minimum step size. The tolerance for the second and third criteria has been taken as 
ε1 = ε2 = 10−7.

3. Computational examples

The solution of inverse bioheat problems is based on the non-homogeneous numerical model 
of the skin tissue including the thermoregulation response of blood perfusion and metabolic 
heat generation of different layers, using LM optimisation technique. However, to test the 
inverse solution, we need measurement data, which have been generated numerically for 
Clark II and Clark IV tumours, solving a direct problem using a numerical model described 
in [38] and by adding different levels of noise to mimic realistic temperature measurements 
on the skin surface. The reason to test the inverse problem solution on numerically generated 
data is to be able to analyse the effect of measurement noise or model error on the solution, 
because the exact value of the searched parameters is known. Therefore, the inverse problem 
will be tested for two cases, Clark II and Clark IV, presenting the early and later stage of 
the skin tumour [12, 21, 22], to show the feasibility of estimating all four parameters of the 
tumour simultaneously.

Material properties and dimensions for each layer and different tumour sizes used in the 
numerical model are presented in table 1. Clark II size (d  =  2.0 mm, h  =  0.44 mm) presents 
a tumour embedded in the papillary dermis, while Clark IV (d  =  2.5 mm, h  =  1.1 mm) pro-
trudes into the reticular dermis layer. The material properties, layer thickness and tumour 
sizes have been chosen based on a literature review [12, 18, 21, 22, 39, 49] and found to be 
appropriate to test our inverse problem. Regarding the thermoregulation response of the dif-
ferent layers, the thermoregulation coefficient Q10,m = Q10,b = 2.0 has been chosen for skin 
layers and muscle [57–59], representing exponential behavior of the metabolic heat genera-
tion and blood perfusion rate, while for the tumour a more linear behavior is expected and the 
value of Q10,m = Q10,b = 1.1 has been prescribed [41]. The mean body core temperature for 
a healthy person in resting position is in the range of 36.5 °C–37.5 °C, therefore the arterial 
blood temperature Ta, as well as the body core temperature at equilibrium T0 has been set to 
Ta = T0 = 37.0 °C [12, 39, 49].

To simulate dynamic thermography we have to prescribe the cooling/rewarming proce-
dure, defined by boundary condition (6) prescribing cooling time, temperature and rewarming 

Table 1. Material properties and tissue dimensions [12, 18, 39, 49].

Material
d  
(mm)

h  
(mm)

ρ   
(kg m−3)

cp   
(J kgk−1)

λ  
(W mK−1)

ωb,bas  
(1 s−1)

qm,bas  
(W m−3)

Epidermis — 0.1 1200 3589 0.235 0.0 0.0
Papillary dermis — 0.7 1200 3300 0.445 0.0002 368.1
Reticular dermis — 0.8 1200 3300 0.445 0.0013 368.1
Fat — 2.0 1000 2674 0.185 0.0001 368.3
Muscle — 8.0 1085 3800 0.510 0.0027 684.2
Tumour Clark II 2.0 0.44 1030 3852 0.558 0.0063 3680
Tumour Clark IV 2.5 1.1 1030 3852 0.558 0.0063 3680
Blood — — 1060 3770 — — —
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stage. Different authors prescribed different cooling times and temperatures [12, 18, 19, 39, 
49]. For this paper, the cooling temperature and duration have been taken from Bhowmik 
and Repaka [49] and Çetingül and Herman [12], due to a good penetration depth and thermal 
response, and are tc  =  60 s and Tc  =  13 °C. As for the surrounding conditions, the ambient 
temperature has been chosen to be T∞ = 22.4◦C  [12, 49] and the heat transfer coefficient 
α = 10 W m−2 K−1 [12, 18]. We simulate 10 min  =  600 s of rewarming period which is 
long enough. The biggest temperature difference between the tumour and surrounding tissue 
appears up to 60 s after the end of cooling process and then decline towards a steady-state 
condition [18]. Therefore, the total time to simulate the whole dynamic thermography test has 
been set to τ = 660 s. To solve the inverse bioheat problem we only need information about 
the skin surface temperature during the rewarming period, nevertheless we have to simulate 
the whole process to accurately determine the tissue response.

In our work [38, 41, 65], we used a structured mesh with a representative element size of 
∆r = 0.5 mm and constant time step ∆t = 1 s. However, for this paper, we upgraded the com-
putational mesh using different mesh density for tumour and surrounding tissue, as well as the 
time discretization using an adaptive time step. During the fast temperature change a small 
time step is used to capture the transient change (at the beginning of the cooling and rewarm-
ing process), while for slow temperature change the time step has been increased. To assure 
numerical accuracy of the direct problem, we carried out a mesh and time discretization analy-
sis. The aim is to reduce the computational time of the direct problem, which is very important 
for inverse or optimisation problems. The final 2D computational mesh of the revolving cross 
section and selection of the adaptive time step for the direct problem is shown in figure 2. We 
decided to use a domain size of D  =  25 mm, to assure the solution is not affected by the adi-
abatic boundary condition (5).

3.1. Measurement data

To evaluate geometrical and physiological parameters of the tumour, the temperature differ-
ence on the skin surface between the lesion and surrounding healthy skin during the rewarm-
ing process is needed. The measurement data for dynamic thermography is obtained by an IR 
camera recording of the absolute surface temperature in the lesion region together with the 
surrounding healthy skin. Therefore, to obtain the data needed for solving the inverse prob-
lem, the simultaneous cooling of the lesion and surrounding healthy skin is needed, as well as 
the data processing to obtain the temperature difference.

Measurement data in this paper have been generated numerically by solving direct bioheat 
problems for Clark II and Clark IV tumours to evaluate the exact solution of the inverse bio-
heat problem. Figure 3 shows the simulated temperature response or temperature difference 
between the tumour and surrounding skin during the rewarming period for the Clark IV test 
example, while figure 4 shows a comparison between Clark II and Clark IV tumours. As can 
be seen, the temperature difference obtained by applying cold stress is higher than for the 
steady-state case, even for an early stage tumour, and therefore much easier to observe with 
the IR camera, which for position p  and time t is defined as

∆Tp,t = T(rp, H, tt)− T(D/2, H, tt), (17)

where rp  represents the radial position of the measurement point and tt the time of the mea-
surement. The measurement data have not been taken for the whole skin surface but just 
for points above the skin tumour at np   =  16 equally spaced positions in the radial range of 
rp ∈ [0, 6 mm] due to the axisymmetric solution, and at each second during the rewarming 
phase, which means that the number of measurements in time has been nt  =  600. We found 
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that this measurement resolution is fine enough to capture the dynamic change of temperature 
difference and to be able to evaluate the four tumour parameters.

During the dynamic thermography the IR camera captures the absolute surface temperature 
response of the underlying lesion and healthy skin for the recovery phase in the planar area. To 
use the proposed model or approach the temperature difference compared to the healthy sur-
rounding skin in the radial direction from the lesion centre is needed, which can be sometimes 
difficult to obtain from a practical point of view, especially when the lesion is not symmetrical 
or convex, due to the non-circular isotherms. The shape of the lesion and the positioning of 
the centre is a concern, which can be overcome by finding the position of the centre as the 
point of the maximum temperature during the recovery phase or the region of the maximum 
temperature approximated with a circle, where the centre of the circle represents the lesion 
centre. The centre the temperature measurement can then be averaged by the angle to obtain 
the circular isotherms and the temperature difference compared to the isotherm furthest away 
from the lesion. The processed data are then used in the proposed numerical model to obtain 
the tumour parameters. In this way, the obtained parameters for the observed irregular tumour 
represent not the actual values but the averaged values for the lesion approximated by a cylin-
drical shape, that is still valuable for diagnostic purposes. However, if the lesion shape devi-
ates too much from the circular one, the obtain values may not be realistic and the numerical 
model should be improved by changing the lesion geometry to describe the observed lesion 
more accurately.

To mimic the real measurement data in this paper, we add white noise to the simulated 
temperature difference response as

∆Tm,p,t = ∆Ts,p,t + ξ∆Terr, (18)
where ξ represents a random number; ξ ∈ [−1, 1], and ∆Terr a level of temperature uncer-
tainty, while the second term on the right hand side represents the temperature deviation 
or noise. Different authors used different levels of uncertainty from 10 mK up to 100 mK   
[15, 42, 48, 49]. Çetingül and Herman [39] used equipment that had an uncertainty of 25 mK, 
while Strąkowska et al [19] used an IR camera with 20 mK, which is possible to obtain using 

Figure 2. Representative computational mesh for Clark II tumour and adaptive time 
step selection.
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laboratory equipment. Modern IR cameras can obtain the NETD (Noise Equivalent 
Temperature Difference) value of less than 30 mK. Thus, we investigate both test cases under 
three different levels; 0 mK, 25 mK and 50 mK. The first one represents exact measurement 
data, while the last two represent low and high levels of noise. In the last two cases, the mea-
surement data do not follow the numerical model anymore. Because the noisy measurement 
data are generated randomly we generated five different measurement sets for each noise 
level, not just one. In this way, it is possible to test how the randomness of the white noise 
affects the inverse solution.

For a clearer presentation, figure 5 shows the exact and noisy measurement data for Clark 
II and Clark IV tumours during the rewarming period, while figure 6 shows the randomness of 
the generated data (different sets) for the uncertainty level of 50 mK. As can be seen from fig-
ure 5, the level can affect the temperature response for the Clark II tumour more than for Clark 
IV, which makes solving inverse problems more difficult and poor accuracy to be expected for 
early stage tumours.

Figure 3. Contours of simulated temperature difference at skin surface for Clark IV 
during the dynamic thermography procedure at different times.
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3.2. Numerical model error

In reality the numerical model is never an identical representation of the examined tissue, due 
to the uncertainty of model parameters, mathematical model, boundary conditions, geometry, 
etc and therefore, does not describe the bioheat transfer exactly or realistically. In the literature 
we can find a large deviation of material properties, layer thicknesses [39, 61, 62] and other 
model parameters, and for this reason they are usually taken at an average value or estimated. 
Because the solution of the inverse problem depends on the numerical model, we should also 
test how the uncertainty of model parameters or error in the numerical model used in this 
paper affects the solution.

Therefore, this paper also covers how the uncertainty of material properties for skin, 
tumour, fat and some boundary conditions affect the inverse solution, which is the novelty 
of this paper. We carried out a study in [41] on the sensitivity of the model parameters that 
showed a higher sensitivity for specific heat and thermal conductivity of the skin layer and 
tumour, tumour size, its blood perfusion rate and thermoregulation coefficient, as well as 

Figure 4. Response for Clark II and Clark IV tumours showing the maximum 
temperature difference and profile through time.
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higher sensitivity for blood properties and arterial blood temperature. Because of the higher 
sensitivity of the tumour blood perfusion rate, its size and thermoregulation coefficient, we 
decided to search for these variables in this inverse analysis study. However, we would also 
like to test how the change of value of other model parameters affects the inverse solution, 
and which of them should be determined as accurately as possible in the numerical model 
to reflect the real experimental data and to obtain an accurate inverse solution. The chosen 
parameters are shown in table 2, where we omit the analysis for the epidermis because of the 
relative small thickness as shown in table 1 and low sensitivity, as well as the muscle tissue, 
which does not affect the tumour temperature response [41]. The parameters that can be easily 
or accurately obtained have also been omitted in this analysis, like cooling temperature and 
time, density and heat capacity of the blood, etc. However, to be able to compare the inverse 
solution and model error, the model parameters have been changed by the same relative value; 
±1% and ±5%, while we should have in mind that uncertainty for some parameters can go 
up to ±50%.

Figure 5. Exact and noisy measurement data for Clark II and Clark IV test example.
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4. Results and discussion

The solution of the inverse problem has been tested on numerically generated data with and 
without noise, prescribing unknown parameters. In this way, the exact solution of the problem 
is known and the analysis of the inverse problem can be verified. The exact solution for Clark 
II is d  =  2.0 mm, h  =  0.44 mm, ωb = 0.0063 s−1 and Q10  =  1.1, while for Clark IV only the 
diameter and thickness are changed to d  =  2.5 mm and h  =  1.1 mm.

To test the optimisation algorithm, stability of results and uniqueness of the solution, we 
run the algorithm using five different starting points y 0. Starting points have been chosen ran-
domly, some in close proximity to the exact solution and some far away. Starting points for 
Clark II and Clark IV test examples are shown in table 3.

The results are presented using tables, which is the most appropriate to show the evalu-
ated parameters of the inverse bioheat problem. This section covers the analysis of the start-
ing point, measurement noise, randomness of the measurement data and model error on the 
inverse solution, as well as a discussion of the results. First, the results are presented for the 

Figure 6. Comparison of different sets of 50 mK noisy measurement data at t  =  200 s 
for Clark II and Clark IV test example.

Table 2. Chosen model parameters for model error analysis.

Material \  
param eter ρ cp k qm,bas ωb,bas h Q10

Epidermis
Papillary dermis � � � � � �
Reticular dermis � � � � � �
Fat � � � � � �
Muscle
Tumour � � �
Blood
Bound. cond. 
param eter

α T∞ T0 = Ta Tc tc

� �
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exact model, which means that all the model parameters like specific heat, layer thickness, 
thermal conductivity of the tissue, etc have been prescribed exactly the same as when the 
measurement data have been generated. This means that the numerical model follows the 
measurement data or that the model describes the examined tissue exactly. In the second 
part, the results for non-exact models are shown, by changing one of the model parameters to 
observe how this change affects the inverse solution. The change is made for several model 
parameters to investigate which of them is the most crucial one and have to be determined 
precisely to make the estimation of the searched parameters more accurate. The model error 
imposes an additional error to the inverse problem, which makes parameter estimation more 
difficult.

4.1. Exact model

4.1.1. Starting point. The analysis of the starting point has been carried out first. This shows 
if the optimisation process is stable and if a unique solution is obtained. If the solution of the 
inverse problem changes drastically with the change of the starting point, then the problem 
does not have a unique solution and is therefore not solvable. Table 4 shows the results for 
Clark II tumour for all three levels of measurement noise using a fourth set of measurement 
data, together with the exact solution in bold for comparison.

As can be seen, the solution of the inverse problem does not depend on the initial starting 
point, which shows that the solution is unique, however there is a small but negligible varia-
tion in the inverse solution regarding the starting point when measurement noise is introduced. 
Similar observations have been made using different sets of measurement data, as well as for 
Clark IV and are therefore omitted. Regarding the solution, we can observe that under zero 
noise condition the exact solution can be retrieved, however an error is made with noisy meas-
urement data. Usually the error of the estimated parameter increases with increasing noise, 
which depends on the randomness of the noise or generated measurement data as it will be 
presented in the next subsection.

Figure 7 shows the convergence of the optimisation algorithm through iteration steps for 
Clark II under no-noise and noisy measurement data for three different starting points, where 
we can observe a steady descent of the objective function for zero noise data, while for noisy 
data convergence is fast at the beginning and then is progressing slowly towards the end of 
the process, which is typical. Normally the optimisation process completes within around 15 
iterations, which is fast, and the starting point does not have a huge effect on the conv ergence 
speed, especially when noise is present. The value of the objective function is of course 

Table 3. Different starting points for optimisation process.

Example y 0 ωb (1 s−1) h (mm) d (mm) Q10(1)

1 0.0080 0.60 2.30 1.40
2 0.0060 0.50 1.90 1.00

Clark II 3 0.0050 0.30 1.70 1.30
4 0.0040 0.40 1.20 1.40
5 0.0060 0.50 1.50 1.40
1 0.0090 0.90 2.40 1.30
2 0.0060 1.20 2.60 1.00

Clark IV 3 0.0090 1.40 3.00 0.80
4 0.0050 0.70 1.80 0.80
5 0.0060 1.20 2.00 1.20
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different for zero noise and noisy measurement data, where for no noise it goes towards zero, 
while for the noisy data it goes towards a certain value, as can be seen in figure 7 and table 4. 
A similar behavior has been observed for Clark IV, as well as for temperature uncertainty of 
50 mK compared to 25 mK and is therefore omitted here.

At this point, we can conclude that the inverse solution obtained with the LM optimisation 
method does not depend on the initial starting point, convergence is fast and that a unique 
solution of the problem is obtained. For zero noise measurement data and exact numerical 
model, the exact solution can be obtained, while for noisy data an error is made, as can bee 
seen from table 4. However, a good approximation to the exact solution can still be obtained 
using low noise measurement data, while the diameter and thermoregulation coefficient could 
be evaluated more precisely regardless of the measurement noise.

4.1.2. Measurement data. As discussed in section 3.1, we would like to test the sensitivity of 
the inverse solution regarding the randomness of the noise. Therefore, five different measure-
ment data sets have been prepared to test both inverse examples, as shown in figure 6. Because 
the solution does not depend on the starting point, the starting point has been taken randomly 
from the set. For Clark II we choose starting point 1 while for Clark IV point 5, which have 
been kept fixed for all our further calculations.

Table 5 shows the results for the Clark II test using different sets of measurement data for 
temperature uncertainty of 25 mK and 50 mK, together with the relative error compared to 
the exact solution. As can be observed, the randomness of the noise is affecting the inverse 
solution and for certain data sets the error can be quite high, especially for the estimation of 
blood perfusion and thickness of the tumour.

Convergence of the LM optimisation algorithm for different sets of noisy measuring data is 
displayed in figure 8, which shows fast convergence at the first five steps and slow at the end, 
as observed when testing different starting points. The number of iteration steps used to find 

Table 4. Solution of inverse problem for Clark II test example using different starting 
points and exact numerical model.

∆Terr y 0 ωb (1 s−1) h (mm) d (mm) Q10(1) F (K2)

Exact 0.006 300 0.4400 2.000 1.100
1 0.006 300 0.4400 2.000 1.100 0.163 × 10−9

2 0.006 300 0.4400 2.000 1.100 0.347 × 10−8

0 mK 3 0.006 300 0.4400 2.000 1.100 0.739 × 10−9

4 0.006 300 0.4400 2.000 1.100 0.118 × 10−7

5 0.006 300 0.4400 2.000 1.100 0.297 × 10−7

1 0.006 647 0.4166 2.000 1.102 0.198 × 10+1

2 0.006 649 0.4165 2.000 1.102 0.198 × 10+1

25 mK 3 0.006 650 0.4164 2.000 1.102 0.198 × 10+1

4 0.006 648 0.4165 2.000 1.102 0.198 × 10+1

5 0.006 649 0.4165 2.000 1.102 0.198 × 10+1

1 0.006 796 0.4064 1.996 1.102 0.798 × 10+1

2 0.006 795 0.4065 1.996 1.102 0.798 × 10+1

50 mK 3 0.006 804 0.4059 1.996 1.102 0.798 × 10+1

4 0.006 790 0.4068 1.996 1.102 0.798 × 10+1

5 0.006 798 0.4063 1.996 1.102 0.798 × 10+1
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the solution was around 15. There is a slight difference between different measurement sets, 
achieving lower value of the objective function, as can be seen from table 5. Similar observa-
tion has also been made for the Clark IV test and is therefore omitted here. However, the LM 
method proved to be stable and appropriate to solve the inverse bioheat problem.

From this analysis, we can conclude that the solution of the inverse problem depends on 
the level and randomness of the noise. Therefore, when testing the inverse problem numer-
ically, it is needed to test the problem on different randomly generated measurement data. In 
this paper, we generated five different sets for each noise level and we statistically analyse the 
results from each set to make a conclusion on how the noise level affects the inverse solution 
as shown in the next subsection.

4.1.3. Solution for clark II and clark IV. As seen from table 5, the inverse analysis solution 
depends on the measurement data set, where in some cases the error for some parameters can 
be quite large. To be able to discuss the inverse solution and how it is affected by measurement 
noise, we used a statistical approach to analyse the solution. We are aware that five different 
solutions is a small sample size, which makes statistical analysis not accurate, however it still 
gives an insight on how the measurement noise affects the inverse solution.

Because of the variation of evaluated parameters for each measurement set the average 
value and standard deviation of each parameter has been calculated, together with the aver-
age error. Therefore, tables 6 and 7 show the results for Clark II and Clark IV, respectively, 
using only noisy measurement data. In the previous subsection, we can see from table 4 that 
an exact estimation of parameters is obtained using zero noise data, regardless of starting 
point, however this is only interesting from the numerical point of view and is not feasible 
in practical problems. As can be observed from table 6 for Clark II, the parameters can be 
estimated with relatively good accuracy for low noise level, while for high level the evalu-
ation of blood perfusion rate and thickness of the tumour exceeds 10% error. However, the 
diameter and thermoregulation coefficient are estimated within 1% regardless of the noise. 
We can also observe that the standard deviation of each parameter is increased with noise, 
which is reasonable. However, for Clark IV, the estimation of all four parameters is much 
more accurate than for Clark II as shown in table 7. The error for low level of noise is below 

Figure 7. Convergence of LM optimisation for Clark II test example using different 
starting points for 0 mK and 25 mK measurement uncertainty.
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3% and similar to the Clark II test example, and the error for diameter and thermoregulation 
coefficient of the tumour is very low. Also, the standard deviation of parameters is smaller for 
Clark IV than for Clark II, showing that the measurement noise does not influence the thermal 
signature of the later stage tumour as much as for early stage, as can be seen from figure 5 or 
6. Here, we should mention that the error of blood perfusion rate and thickness of the tumour 
are connected, because these two parameters are interdependent. If the blood perfusion rate is 
evaluated higher than the exact one, then the thickness will be underestimated and vice versa, 
which can be observed from tables 6 and 7.

We can conclude that all four parameters can be estimated, especially the diameter and 
thermoregulation coefficient, regardless of the noise and tumour stage. While the estimation 
error for blood perfusion rate and thickness is low for later tumour stage, the parameters can 
still be evaluated for skin tumour at an early stage for low measurement noise.

Table 5. Solution of inverse problem and relative error for Clark II test example using 
different sets of measurement data and exact numerical model.

∆Terr Set ωb (1 s−1) h (mm) d (mm) Q10(1) ωb (%)
h  
(%)

d  
(%)

Q10  
(%) F (K2)

Exact 0.006 300 0.4400 2.000 1.100
1 0.005 670 0.5058 1.974 1.098 9.99 14.95 1.31 0.20 0.204 × 10+1

2 0.006 296 0.4310 2.027 1.100 0.06 2.05 1.33 0.01 0.199 × 10+1

25 mK 3 0.005 845 0.4867 1.970 1.094 7.23 10.61 1.51 0.50 0.203 × 10+1

4 0.006 647 0.4166 2.000 1.102 5.51 5.32 0.02 0.19 0.198 × 10+1

5 0.005 323 0.5317 1.985 1.089 15.51 20.84 0.73 1.04 0.201 × 10+1

1 0.006 396 0.4394 1.999 1.115 1.52 0.13 0.03 1.32 0.808 × 10+1

2 0.005 399 0.5432 1.946 1.093 14.34 23.46 2.72 0.60 0.801 × 10+1

50 mK 3 0.008 347 0.3321 1.999 1.128 32.50 24.53 0.03 2.54 0.803 × 10+1

4 0.006 796 0.4064 1.996 1.102 7.88 7.64 0.20 0.19 0.798 × 10+1

5 0.006 987 0.3854 2.016 1.101 10.91 12.41 0.82 0.11 0.795 × 10+1

Figure 8. Convergence of LM optimisation for Clark II test example using different 
measurement data set for 25 mK and 50 mK measurement uncertainty.
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4.2. Model error

The uncertainty of material properties, mathematical model or boundary conditions of the 
numerical model can influence the accuracy of the inverse solution. Therefore, parameters 
shown in table 2 have been chosen to analyse the inverse solution sensitivity to ±1% and ±5% 
relative change, where parameters for papillary dermis and reticular dermis (skin) have been 
changed simultaneously due to having the same value as can be seen in table 1.

Table 8 shows the solutions for uncertainty of skin heat capacity under exact measurement 
data for Clark II and Clark IV tumours, where the solution error increases with the specific 
heat change. If the skin heat capacity is underestimated, the estimation of blood perfusion 
rate, tumour diameter and thermoregulation coefficient will be also underestimated, while 
thickness will be overestimated due to the lower estimated blood perfusion rate, and vice 
versa. As already described, the blood perfusion rate and tumour thickness are interdepend-
ent and also the error for these two parameters will be connected and can be looked as one. 
The 5% change of skin heat capacity will affect the estimation of tumour thickness and blood 
perfusion rate the most, where the error will be around 10% for thickness and 6% for blood 
perfusion rate for the Clark II example. The uncertainty will also affect the estimation of the 
thermoregulation coefficient, while the diameter will still be determined accurately. For Clark 
IV, the uncertainty in skin heat capacity affects the blood perfusion rate the most, while other 
parameters can be determined accurately with an error lower than 2%. From the results shown 
in table 8, we can conclude that uncertainty of skin heat capacity will have the largest effect 
on the estimation of blood perfusion rate and tumour thickness and for accurate estimation of 
these parameters, heat capacity of the skin should be determined in the numerical model as 
accurately as possible, especially when the estimation of searched parameters is needed for 
an early stage tumour.

From table 8, we analyse the effect of skin specific heat uncertainty on inverse solution 
under zero noise measurement data, while table 9 shows the effect of measurement noise, 
showing only the average estimation error. The average error of the estimated parameters is 
even larger under noisy measurement, especially for Clark II. The error for blood perfusion 
rate and tumour thickness becomes higher than 13% for 50 mK of measurement uncertainty, 
regardless of the level of skin specific heat change, which means that measurement noise 
in Clark II is prevailing, and similar conclusion can be made for temperature uncertainty of 

Table 6. Solution of inverse problem for Clark II test example showing the average 
value of evaluated parameters, standard deviation and average error.

∆Terr ωb ± σω (1 s−1) h ± σh (mm) d ± σd (mm) Q10 ± σQ(1) ωb  (%) h  (%) d  (%) Q10  (%)

Exact 0.006 300 0.4400 2.000 1.100
25 mK 0.005 956 ± 0.000 522 0.4743 ± 0.0491 1.991 ± 0.023 1.097 ± 0.005 7.66 10.75 0.98 0.39
50 mK 0.006 785 ± 0.001 067 0.4213 ± 0.0785 1.991 ± 0.027 1.108 ± 0.014 13.42 13.63 0.76 0.95

Table 7. Solution of inverse problem for Clark IV test example showing the average 
value of evaluated parameters, standard deviation and average error.

∆Terr ωb ± σω (1 s−1) h ± σh (mm) d ± σd (mm) Q10 ± σQ(1) ωb  (%) h  (%) d  (%) Q10  (%)

Exact 0.006 300 1.100 2.500 1.100
25 mK 0.006 260 ± 0.000 117 1.1135 ± 0.0364 2.498 ± 0.010 1.102 ± 0.002 1.46 2.63 0.29 0.21
50 mK 0.006 326 ± 0.000 274 1.1046 ± 0.1025 2.499 ± 0.038 1.102 ± 0.010 3.05 7.20 1.25 0.74
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25 mK. However, for Clark IV the parameter estimation error does not change so significantly 
and the inverse solution is still controlled by model error or uncertainty.

The error of the inverse solution under noisy measurement data and model error can be 
roughly estimated as the sum of separated errors made by the measurement noise under an 
exact model and error for model uncertainty under zero noise measurement data. Therefore, 
to present more clearly the effect of model uncertainty, only the estimated parameter error for 
zero noise measurement data will be shown. Tables 10 and 11 show the average parameter 
error estimation for 1% and 5% uncertainty, respectively. As can be observed, the metabolic 
heat generation does not affect the inverse solution, regardless of the tumour stage, as well as 
blood perfusion rate and thermoregulation coefficient due to low sensitivity [41]. The error is 
below 0.5% for 5% while the highest effect among these parameters will be on the skin blood 
perfusion rate and, consequently, also the skin thermoregulation coefficient Q10. Small errors 

Table 8. Inverse solution for Clark II and Clark IV test example under skin specific 
heat uncertainty.

Example
cp   
(J kgK−1) ωb (1 s−1) h (mm) d (mm) Q10(1) ωb  (%) h  (%) d  (%) Q10  (%)

Exact 0.006 300 1.100 2.500 1.100
3135.0 
(−5%)

0.005 979 0.4836 1.980 1.062 5.09 9.90 0.98 3.50

Clark II 3267.0 
(−1%)

0.006 223 0.4494 1.996 1.092 1.23 2.14 0.21 0.72

3333.0 
(+1%)

0.006 377 0.4311 2.004 1.107 1.22 2.02 0.20 0.67

3465.0 
(+5%)

0.006 738 0.3948 2.020 1.135 6.95 10.27 1.00 3.21

3135.0 
(−5%)

0.005 999 1.1183 2.506 1.121 4.78 1.66 0.26 1.91

Clark IV 3267.0 
(−1%)

0.006 236 1.1048 2.501 1.104 1.02 0.44 0.04 0.38

3333.0 
(+1%)

0.006 366 1.0948 2.499 1.096 1.05 0.47 0.03 0.38

3465.0 
(+5%)

0.006 643 1.0713 2.497 1.079 5.44 2.61 0.13 1.91

Table 9. Average error of the inverse solution for Clark II and Clark IV test example for 
skin specific heat uncertainty under noisy measurement data.

Clark II Clark IV

∆Terr cp  
(%)

ωb  
(%)

h   
(%)

d  
(%)

Q10  
(%)

ωb  
(%)

h  
(%)

d  
(%)

Q10   
(%)

−5% 9.61 17.26 1.56 3.87 5.79 4.82 0.44 2.14
25 mK −1% 8.17 11.31 1.10 1.06 2.08 2.97 0.30 0.53

+1% 7.57 10.23 0.93 0.50 1.31 2.45 0.28 0.26

+5% 7.11 8.16 0.85 3.04 4.93 2.39 0.27 1.81

−5% 10.83 13.19 1.40 2.62 4.79 7.40 1.27 2.05
50 mK −1% 12.43 13.37 0.88 1.00 2.73 6.12 1.06 0.78

+1% 14.41 14.64 0.77 1.35 2.78 5.67 1.02 0.63

+5% 19.02 18.78 1.22 3.75 6.22 5.20 0.95 0.77
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Table 10. Average error of the inverse solution for Clark II and Clark IV test example 
for 1% change of model parameters under zero noise measurement data.

Clark II Clark IV

Parameter Material ωb  (%) h  (%) d  (%) Q10  (%) ωb  (%) h  (%) d  (%) Q10  (%)

Skin 1.22 2.08 0.20 0.70 1.03 0.45 0.04 0.38
cp Fat 0.20 0.48 0.04 0.13 0.15 0.19 0.05 0.20

Tumour 2.20 2.30 0.19 1.15 0.04 0.09 0.05 0.85
Skin 1.58 0.85 0.43 0.79 3.95 3.98 0.09 0.41

λ Fat 0.23 0.14 0.11 0.19 0.00 0.85 0.03 0.27
Tumour 0.20 1.30 0.21 0.49 1.50 1.65 0.09 0.30
Skin 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

qm,bas Fat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tumour 0.00 0.04 0.00 0.01 0.02 0.05 0.01 0.02

ωm,bas Skin 0.00 0.11 0.00 0.04 0.00 0.00 0.00 0.00
Fat 0.00 0.01 0.00 0.00 0.02 0.05 0.01 0.01

Q10 Skin 0.05 0.02 0.01 0.03 0.08 0.09 0.01 0.02
Fat 0.00 0.00 0.00 0.00 0.02 0.05 0.01 0.01
Pap. dermis 0.06 0.15 0.04 0.12 0.16 0.21 0.04 0.19

h Ret. dermis 0.10 0.09 0.05 0.11 0.09 0.12 0.05 0.14
Fat 0.24 0.28 0.01 0.26 0.28 0.52 0.01 0.35

Bound. cond. Ta 2.74 0.19 0.26 0.49 3.40 1.56 0.07 0.24
α 0.04 0.57 0.10 0.23 0.50 0.20 0.04 0.22

Table 11. Average error of the inverse solution for Clark II and Clark IV test example 
for 5% change of model parameters under zero noise measurement data.

Clark II Clark IV

Parameter Material ωb  (%) h  (%) d  (%) Q10  (%) ωb  (%) h  (%) d  (%) Q10  (%)

Skin 6.02 10.08 0.99 3.35 5.11 2.14 0.19 1.91
cp Fat 1.01 2.37 0.22 0.67 0.77 0.94 0.24 0.99

Tumour 11.29 11.62 0.96 5.72 0.23 0.12 0.27 4.28
Skin 8.81 8.86 1.89 3.82 20.86 24.91 1.05 1.70

λ Fat 1.15 0.72 0.54 0.93 0.09 4.23 0.14 1.36
Tumour 3.95 5.22 0.95 2.42 7.80 9.06 0.63 1.44
Skin 0.01 0.03 0.00 0.01 0.02 0.05 0.01 0.01

qm,bas Fat 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
Tumour 0.00 0.19 0.01 0.07 0.18 0.09 0.01 0.08

ωm,bas Skin 0.00 0.55 0.02 0.22 0.00 0.00 0.00 0.00
Fat 0.01 0.06 0.00 0.02 0.05 0.09 0.01 0.02

Q10 Skin 0.24 0.10 0.03 0.12 0.17 0.46 0.01 0.12
Fat 0.00 0.02 0.00 0.01 0.05 0.09 0.01 0.02
Pap. dermis 0.32 0.76 0.20 0.60 0.80 1.04 0.22 0.94

h Ret. dermis 0.50 0.45 0.24 0.55 0.46 0.60 0.23 0.69
Fat 1.19 1.41 0.04 1.30 1.39 2.58 0.04 1.73

Bound. cond. Ta 14.10 1.06 1.28 2.48 17.23 8.01 0.28 1.21
α 0.19 2.87 0.49 1.13 2.49 0.96 0.20 1.08
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can also be expected for skin and fat thickness, where fat has the strongest effect [41]. The 
solution error in this case is in the same range of the blood perfusion rate, tumour thickness 
and thermoregulation coefficient regardless of tumour size, while usually the highest error has 
been made for blood perfusion rate and tumour thickness for early stage tumours as already 
described. However, the error made because of the thickness is small compared to the error in 
skin and tumour heat capacity and thermal conductivity. Model sensitivity of the tumour and 
skin thermal conductivity is especially visible for the Clark IV example, which is 2–2.5 times 
higher than for Clark II, while for the Clark II example, tumour heat capacity has the strongest 
effect. The 5% error in these model parameters will produce solution errors in the range of 
5%–25% and should, therefore, be determined as accurately as possible to reduce the estima-
tion error as shown in table 10. Regarding boundary conditions, the heat transfer coefficient 
α does not have a high impact on the inverse solution, however, a large error can be made if 
the estimation error is high. Uncertainty in the arterial blood temperature has a much stronger 
effect on the inverse solution than the heat transfer coefficient, especially on blood perfusion 
rate, however the relative error made by the guess of Ta  =  37 °C is below 1%, which means 
that solution error will be small.

To conclude, model error in fat thickness and material properties, as well as metabolic heat 
generation, blood perfusion rate, thermoregulation coefficient and layer thickness for skin 
does not drastically affect the inverse solution, and the solution error will be mostly controlled 
by measurement noise. However, specific heat and thermal conductivity of skin and tumour 
will have to be evaluated more precisely to estimate four tumour parameters successfully. 
Some of these parameters affect the inverse solution more for later stage tumour than earlier 
ones. The reason for this behavior can be found in tumour size, possibility to accumulate cold 
and rewarming speed, as well as the cold penetration depth around the lesion, which shifts 
the thermal response during the rewarming period and influences the accuracy of parameter 
estimation.

5. Conclusion

This paper covers the solution of inverse bioheat problems of simultaneous estimation of four 
different skin tumour parameters based on surface temperature differences between the lesion 
and health skin during the rewarming period of dynamic thermography. These four param-
eters are tumour thickness, diameter, blood perfusion rate and thermoregulation coefficient, 
which are important for diagnostic to estimate stage and invasiveness of the skin tumour. The 
problem in this paper is solved numerically and presents the base for further developments of 
non-invasive diagnostic techniques using IRT imaging.

The estimation of all four parameters is carried out on a more realistic non-homogene-
ous 3D numerical skin model containing a skin tumour that includes the thermoregulation 
response of the skin, lesion and surrounding tissue, which is important to simulate dynamic 
heat transfer during the cooling/rewarming process of dynamic thermography as accurately 
as possible, and the surface temperature response of the tumour during the rewarming period. 
The inverse problem is solved using an optimisation approach with deterministic LM method, 
which proved to be efficient for this inverse problem. The optimisation has been made based 
on the objective function that compared the simulated surface temperature difference between 
the healthy skin and lesion with the measurement data. The temperature difference between 
the skin and lesion reduces the error that can be made by adopting a non-exact numerical 
model and the difficulties in measuring the absolute temperature. In this paper, measurement 
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data have been generated numerically for Clark II and Clark IV examples. To mimic the 
measurement error a 25 mK and 50 mK white noise has been added, based on the accuracy 
of modern IR cameras. Because the measurement data have been generated numerically with 
predetermined searched values, which were taken as exact, it has been possible to evaluate the 
error of the inverse solution and the success of dynamic thermography for early skin tumour 
detection.

The paper also addresses the analysis of measurement noise and model uncertainty on the 
inverse solution that presents a novelty in this field, especially as the additional thermoregula-
tion coefficient can be estimated accurately under different levels of noise and tumour stage.

The optimisation algorithm and uniqueness of the inverse solution have been tested using 
different starting points. The solution does not depend on the starting point, and the exact solu-
tion has been obtained using zero noise measurement data and the exact model. The starting 
point analysis also shows the robustness of the optimisation LM algorithm, which converged 
in around 15 iterations steps. However, the randomness of measurement noise has a high 
effect on the solution. Therefore, the solution has been tested and statistically analysed for 
five different measurement sets to establish how the noise and randomness affect the accuracy 
of the inverse solution. The accuracy is affected by the level of noise and stage of tumour and 
is better for low noise level and later tumour stages, however, diameter and thermoregulation 
coefficient could also be determined for early stage tumours and high levels of noise. The 
accuracy of the blood perfusion rate and tumour thickness is most affected by noise and are 
correlated because of interdependency. A higher blood perfusion rate leads to thinner tumour 
estimation and vice versa.

The paper also addresses the error analysis induced by the numerical model error. Several 
model parameters have been varied by ±1% and ±5% to evaluate which of them affects the 
inverse solution the most. As shown, the most important parameters are thermal conductivity 
and specific heat of skin and tumour, as well as arterial temperature, while metabolic heat 
generation, blood perfusion rate, thermoregulation coefficient and thickness of the skin and 
fat, together with thermal conductivity and heat capacity of the fat layer, are not so impor-
tant. Because the uncertainty of arterial temperature is smaller than 1%, it does not impose a 
problem, and therefore only the heat capacity and thermal conductivity need to be determined 
precisely in the numerical model to evaluate skin tumour parameters as accurately as possible, 
while keeping the noise level low.

As shown in the paper, dynamic thermography is a promising non-invasive approach to 
detect and evaluate stage and invasiveness of the skin tumour, which can improve the survival 
rate if detected in its early stage, as well as to evaluate some of the parameters that are not well 
researched as thermoregulation coefficient or response of the tumour to cold stress. Lesion 
parameters are evaluated based on the numerical model using cylindrical shape of the lesion, 
however it can be also used for the non-symmetrical lesions that can be approximated by the 
cylinder, for which the measurement data has to be averaged by the angle regards to the lesion 
centre. The accuracy of the evaluated parameters in this case depends on the shape deviation 
from the cylindrical one, which will be the focus of our future work.
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